在對(duì)人們休閑的一次調(diào)查中,共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人主要的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
(2)你有多大的把握認(rèn)為性別與休閑方式是否有關(guān)系?
考點(diǎn):獨(dú)立性檢驗(yàn)的應(yīng)用
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:(1)根據(jù)共調(diào)查了124人,其中女性70人,男性54人.女性中有43人主要的休閑方式是看電視,另外27人的休閑方式是運(yùn)動(dòng);男性中有21人主要的休閑方式是看電視,另外33人主要的休閑方式是運(yùn)動(dòng).得到列聯(lián)表.
(2)根據(jù)列聯(lián)表中所給的數(shù)據(jù)做出觀測(cè)值,把觀測(cè)值同臨界值進(jìn)行比較得到有97.5%的把握認(rèn)為性別與休閑方式有關(guān)系.
解答: 解:(1)2×2的列聯(lián)表:
      休閑方式
性別
看電視運(yùn)動(dòng)合計(jì)
432770
213354
合計(jì)6460124
(2)根據(jù)列聯(lián)表中的數(shù)據(jù)得到K2的觀測(cè)值為
K2=
124×(43×33-27×21)2
70×54×64×60
≈6.201
因?yàn)閗=6.201>5.024,所以有97.5%的把握認(rèn)為休閑方式與性別有關(guān)系.
點(diǎn)評(píng):獨(dú)立性檢驗(yàn)是考查兩個(gè)分類變量是否有關(guān)系,并且能較精確的給出這種判斷的可靠程度的一種重要的統(tǒng)計(jì)方法,主要是通過k2的觀測(cè)值與臨界值的比較解決的.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在正方體ABCD-A1B1C1D1中,
(1)求異面直線BD與B1C所成角的余弦值;
(2)求證:平面ACB1⊥平面B1D1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,若點(diǎn)A(3,
π
3
),B(4
3
,
6
).
(1)求|AB|;
(2)求△AOB的面積(O為極點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a|
x2-a
x-2
=1},集合B={x|
x+a
x2-2
=1},則集合B是否可以是單元素?若可以,用列舉法表示集合A,若不可以,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單位向量
a
b
滿足(2
a
-3
b
)•(2
a
+
b
)=3.
(1)求
a
b
;                
(2)求|2
a
-
b
|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PD⊥底面ABCD,底面ABCD為正方形,PD=DC,E,F(xiàn)分別是AB,PB的中點(diǎn).
(1)求證:EF⊥CD;
(2)設(shè)PD=AD=a,求三棱錐B-EFC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C是到兩定點(diǎn)F1(-2,0)、F2(2,0)的距離之差的絕對(duì)值等于定長(zhǎng)2a的點(diǎn)的集合.
(1)若a=
3
,求曲線C的方程;
(2)若直線l過(0,1)點(diǎn),且與(1)中曲線C只有一個(gè)公共點(diǎn),求直線方程;
(3)若a=1,是否存在一直線y=kx+2與曲線C相交于兩點(diǎn)A、B,使得OA⊥OB,若存在,求出k的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}(n∈N*)中,a1=1,an+1=
an
2an+1
,則an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二項(xiàng)式(1-x)4n+1的展開式中,系數(shù)最大的項(xiàng)是第
 
項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案