【題目】在平面直角坐標(biāo)系xOy中,將從點(diǎn)M出發(fā)沿縱、橫方向到達(dá)點(diǎn)N的任一路徑稱為M到N的一條“L路徑”.如圖所示的路徑MM1M2M3N與路徑MN1N都是M到N的“L路徑”.某地有三個(gè)新建居民區(qū),分別位于平面xOy內(nèi)三點(diǎn)A(3,20),B(﹣10,0),C(14,0)處.現(xiàn)計(jì)劃在x軸上方區(qū)域(包含x軸)內(nèi)的某一點(diǎn)P處修建一個(gè)文化中心.

(1)寫出點(diǎn)P到居民區(qū)A的“L路徑”長(zhǎng)度最小值的表達(dá)式(不要求證明);
(2)若以原點(diǎn)O為圓心,半徑為1的圓的內(nèi)部是保護(hù)區(qū),“L路徑”不能進(jìn)入保護(hù)區(qū),請(qǐng)確定點(diǎn)P的位置,使其到三個(gè)居民區(qū)的“L路徑”長(zhǎng)度之和最小.

【答案】
(1)

解:設(shè)點(diǎn)P的坐標(biāo)為(x,y),則

點(diǎn)P到居民區(qū)A的“L路徑”長(zhǎng)度最小值為|x﹣3|+|y﹣20|,y∈[0,+∞);


(2)

解:由題意知,點(diǎn)P到三個(gè)居民區(qū)的“L路徑”長(zhǎng)度之和的最小值為點(diǎn)P到三個(gè)居民區(qū)的“L路徑”長(zhǎng)度最小值之和(記為d)的最小值

①當(dāng)y≥1時(shí),d=|x+10|+|x﹣14|+|x﹣3|+2|y|+|y﹣20|

∵d1(x)=|x+10|+|x﹣14|+|x﹣3|≥|x+10|+|x﹣14|≥24

∴當(dāng)且僅當(dāng)x=3時(shí),d1(x)=|x+10|+|x﹣14|+|x﹣3|的最小值為24

∵d2(y)=2|y|+|y﹣20|≥21

∴當(dāng)且僅當(dāng)y=1時(shí),d2(y)=2|y|+|y﹣20|的最小值為21

∴點(diǎn)P的坐標(biāo)為(3,1)時(shí),點(diǎn)P到三個(gè)居民區(qū)的“L路徑”長(zhǎng)度之和的最小,且最小值為45;

②當(dāng)0≤y≤1時(shí),由于“L路徑”不能進(jìn)入保護(hù)區(qū),∴d=|x+10|+|x﹣14|+|x﹣3|+1+|1﹣y|+|y|+|y﹣20|

此時(shí)d1(x)=|x+10|+|x﹣14|+|x﹣3|,d2(y)=1+|1﹣y|+|y|+|y﹣20|=22﹣y≥21

由①知d1(x)=|x+10|+|x﹣14|+|x﹣3|≥24,∴d1(x)+d2(y)≥45,當(dāng)且僅當(dāng)x=3,y=1時(shí)等號(hào)成立

綜上所述,在點(diǎn)P(3,1)處修建文化中心,可使該文化中心到三個(gè)居民區(qū)的“L路徑”長(zhǎng)度之和最。


【解析】(1)根據(jù)“L路徑”的定義,可得點(diǎn)P到居民區(qū)A的“L路徑”長(zhǎng)度最小值;(2)由題意知,點(diǎn)P到三個(gè)居民區(qū)的“L路徑”長(zhǎng)度之和的最小值為點(diǎn)P到三個(gè)居民區(qū)的“L路徑”長(zhǎng)度最小值之和(記為d)的最小值,分類討論,利用絕對(duì)值的幾何意義,即可求得點(diǎn)P的坐標(biāo).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|x﹣1|+|x+a|,
(1)當(dāng)a=﹣2時(shí),求不等式f(x)<g(x)的解集;
(2)若a>﹣1,且當(dāng)x∈[﹣a,1]時(shí),不等式f(x)≤g(x)有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣4,﹣4,…, ,…,即當(dāng) <n≤ (k∈N*)時(shí), .記Sn=a1+a2+…+an(n∈N).對(duì)于l∈N , 定義集合Pl=﹛n|Sn為an的整數(shù)倍,n∈N , 且1≤n≤l}
(1)求P11中元素個(gè)數(shù);
(2)求集合P2000中元素個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《厲害了,我的國(guó)》這部電影記錄:到2017年底,我國(guó)高鐵營(yíng)運(yùn)里程達(dá)2.5萬(wàn)公里,位居世界第一位,超過(guò)第二名至第十名的總和,約占世界高鐵總量的三分之二.如圖是我國(guó)2009年至2017年高鐵營(yíng)運(yùn)里程(單位:萬(wàn)公里)的折線圖.

根據(jù)這9年的高鐵營(yíng)運(yùn)里程,甲、乙兩位同學(xué)分別選擇了與時(shí)間變量的兩個(gè)回歸模型①;.

(1)求(精確到0.01);

(2)乙求得模型②的回歸方程為,你認(rèn)為哪個(gè)模型的擬合效果更好?并說(shuō)明理由.

附:參考公式:,,.

參考數(shù)據(jù):

1.39

76.94

285

0.22

0.09

3.72

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解當(dāng)下高二男生的身高狀況,某地區(qū)對(duì)高二年級(jí)男生的身高(單位: )進(jìn)行了抽樣調(diào)查,得到的頻率分布直方圖如圖所示.已知身高在之間的男生人數(shù)比身高在之間的人數(shù)少1人.

(1)若身高在以內(nèi)的定義為身高正常,而該地區(qū)共有高二男生18000人,則該地區(qū)高二男生中身高正常的大約有多少人?

(2)從所抽取的樣本中身高在的男生中隨機(jī)再選出2人調(diào)查其平時(shí)體育鍛煉習(xí)慣對(duì)身高的影響,則所選出的2人中至少有一人身高大于185的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0,函數(shù)
(1)記f(x)在區(qū)間[0,4]上的最大值為g(a),求g(a)的表達(dá)式;
(2)是否存在a使函數(shù)y=f(x)在區(qū)間(0,4)內(nèi)的圖象上存在兩點(diǎn),在該兩點(diǎn)處的切線互相垂直?若存在,求出a的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)幾何體的三視圖如圖所示,該幾何體從上到下由四個(gè)簡(jiǎn)單幾何體組成,其體積分別記為V1 , V2 , V3 , V4 , 上面兩個(gè)簡(jiǎn)單幾何體均為旋轉(zhuǎn)體,下面兩個(gè)簡(jiǎn)單幾何體均為多面體,則有(

A.V1<V2<V4<V3
B.V1<V3<V2<V4
C.V2<V1<V3<V4
D.V2<V3<V1<V4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某餐廳通過(guò)查閱了最近5次食品交易會(huì)參會(huì)人數(shù) (萬(wàn)人)與餐廳所用原材料數(shù)量 (袋),得到如下統(tǒng)計(jì)表:

第一次

第二次

第三次

第四次

第五次

參會(huì)人數(shù) (萬(wàn)人)

13

9

8

10

12

原材料 (袋)

32

23

18

24

28

(1)根據(jù)所給5組數(shù)據(jù),求出關(guān)于的線性回歸方程.

(2)已知購(gòu)買原材料的費(fèi)用 (元)與數(shù)量 (袋)的關(guān)系為,

投入使用的每袋原材料相應(yīng)的銷售收入為700元,多余的原材料只能無(wú)償返還,據(jù)悉本次交易大會(huì)大約有15萬(wàn)人參加,根據(jù)(1)中求出的線性回歸方程,預(yù)測(cè)餐廳應(yīng)購(gòu)買多少袋原材料,才能獲得最大利潤(rùn),最大利潤(rùn)是多少?(注:利潤(rùn)銷售收入原材料費(fèi)用).

參考公式: , .

參考數(shù)據(jù): , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀如圖所示的程序框圖,若輸入的k=10,則該算法的功能是(

A.計(jì)算數(shù)列{2n1}的前10項(xiàng)和
B.計(jì)算數(shù)列{2n1}的前9項(xiàng)和
C.計(jì)算數(shù)列{2n﹣1}的前10項(xiàng)和
D.計(jì)算數(shù)列{2n﹣1}的前9項(xiàng)和

查看答案和解析>>

同步練習(xí)冊(cè)答案