【題目】若函數(shù)在處的切線與直線平行,則實(shí)數(shù)____

當(dāng)a≤0時(shí),若方程有且只有一個(gè)實(shí)根,則實(shí)數(shù)的取值范圍為_________.

【答案】 1

【解析】 (1)f(x)=x3+3ax1,得到f′(x)=3x2+3a,

因?yàn)榍在x=1處的切線與y=6x+6平行,

y=6x+6的斜率為6,

所以f′(1)=6,即3+3a=6,解得a=1;

(2)g(x)=x3+3ax16,

g′(x)=3x2+3a=3(x2+a),

a=0時(shí),g′(x)0,g(x)R遞增,

x∞時(shí),g(x)→∞,x→+∞時(shí),g(x)→+∞,

故函數(shù)g(x)有且只有一個(gè)零點(diǎn),

即方程f(x)=15有且只有一個(gè)實(shí)根,

a<0時(shí),g′(x)>0,解得: ,

g′(x)<0,解得:

g(x) 遞增,遞減,遞增,

g(x)極大值 ,

解得:

綜上:-4<a0.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為實(shí)數(shù),函數(shù).

1)求的極值;

2)當(dāng)在什么范圍內(nèi)取值時(shí),曲線軸僅有一個(gè)交點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中, , ,平面平面,四邊形是菱形, .

(1)求證: 平面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)計(jì)一個(gè)算法計(jì)算1×3×5×7×…×99值的算法畫出程序框圖,寫出程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知曲線為參數(shù)),在以為極點(diǎn), 軸正半軸為極軸的極坐標(biāo)系中,曲線,曲線.

(1)求曲線的交點(diǎn)的直角坐標(biāo);

(2)設(shè)點(diǎn), 分別為曲線上的動(dòng)點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱臺中, , , ,平面平面

(1)求證: 平面;

(2)點(diǎn)上一點(diǎn),二面角的大小為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐的底面為菱形, , , .

(Ⅰ)求證: ;

(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)某市地產(chǎn)數(shù)據(jù)研究的數(shù)據(jù)顯示,2016年該市新建住宅銷售均價(jià)走勢如下圖所示,為抑制房價(jià)過快上漲,政府從8月采取宏觀調(diào)控措施,10月份開始房價(jià)得到很好的抑制.

(1)地產(chǎn)數(shù)據(jù)研究院發(fā)現(xiàn),3月至7月的各月均價(jià)(萬元/平方米)與月份之間具有較強(qiáng)的線性相關(guān)關(guān)系,試建立關(guān)于的回歸方程(系數(shù)精確到0.01);政府若不調(diào)控,依此相關(guān)關(guān)系預(yù)測第12月份該市新建住宅銷售均價(jià);

(2)地產(chǎn)數(shù)據(jù)研究院在2016年的12個(gè)月份中,隨機(jī)抽取三個(gè)月的數(shù)據(jù)作樣本分析,若關(guān)注所抽三個(gè)月份的所屬季度,記不同季度的個(gè)數(shù)為,求的分布列和數(shù)學(xué)期望.

參考數(shù)據(jù): , , ;

回歸方程中斜率和截距的最小二乘法估計(jì)公式分別為:

, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了宣傳環(huán)保知識,舉辦了一次“環(huán)保知識知多少”的問卷調(diào)查活動(dòng)(一

人答一份).現(xiàn)從回收的年齡在20~60歲的問卷中隨機(jī)抽取了100份,統(tǒng)計(jì)結(jié)果如下面的圖表所示.

年齡

分組

抽取份數(shù)

答對全卷

的人數(shù)

答對全卷的人數(shù)

占本組的概率

[20,30)

40

28

0.7

[30,40)

27

0.9

[40,50)

10

4

[50,60]

20

0.1

(1)分別求出 , 的值;

(2)從年齡在答對全卷的人中隨機(jī)抽取2人授予“環(huán)保之星”,求年齡在的人中至少有1人被授予“環(huán)保之星”的概率.

查看答案和解析>>

同步練習(xí)冊答案