某射手射擊一次擊中10環(huán),9環(huán),8環(huán)的概率分別為0.3,0.3,0.2,則他射擊一次命中8環(huán)或9環(huán)的概率為
 
考點(diǎn):互斥事件的概率加法公式
專題:計(jì)算題,概率與統(tǒng)計(jì)
分析:設(shè)“命中8環(huán)”為事件A,“命中9環(huán)”為事件B,則A、B互斥,故所求事件的概率等于 P(A+B)=P(A)+P(B),運(yùn)算求得結(jié)果.
解答: 解:設(shè)“命中8環(huán)”為事件A,“命中9環(huán)”為事件B,則A、B互斥,
故在一次射擊中,命中8環(huán)或9環(huán)的概率為 P(A+B)=P(A)+P(B)=0.2+0.3=0.5.
故答案為:0.5.
點(diǎn)評(píng):本題主要考查互斥事件的概率加法公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=axlnx+b(a,b∈R)的圖象過(guò)點(diǎn)(1,0)且在此點(diǎn)處的切線斜率為1.
(1)求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)若g(x)=
1
2
x2-mx+
3
2
,存在x0∈(0,+∞)使得f(x0)≥g(x0)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,AP=AB=
2
,點(diǎn)E是棱PB的中點(diǎn).
(Ⅰ)證明:AE⊥平面PBC;
(Ⅱ)若AD=1,求二面角B-EC-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若空間向量
a
、
b
滿足(
a
+
b
)⊥(2
a
-
b
),(
a
-2
b
)⊥(2
a
+
b
),則cos<
a
,
b
>=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若兩條直線ax+2y+6=0與x+(a-1)y+(a2-1)=0平行,則a的取值集合是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在空間直角坐標(biāo)系中,已知A(1,-3,1),B(2,3,2),點(diǎn)P在z軸上,且滿足|PA|=|PB|,則點(diǎn)P的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2分別是橢圓
x2
a2
+
y2
b2
=1(a>b>0)的兩焦點(diǎn),過(guò)F1作直線l交此橢圓于A、B兩點(diǎn),則△ABF2的周長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
sinx
x
,下列命題正確的是
 
.(寫出所有正確命題的序號(hào))
①f(x)是奇函數(shù);    
②對(duì)定義域內(nèi)任意x,f(x)<1恒成立;
③當(dāng)x=
3
2
π時(shí),f(x)取得極小值; 
④f(2)>f(3); 
⑤當(dāng)x>0時(shí),若方程|f(x)|=k有且僅有兩個(gè)不同的實(shí)數(shù)解α,β(α>β),則β•cosα=-sinβ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在某年級(jí)的聯(lián)歡會(huì)上設(shè)計(jì)了一個(gè)摸獎(jiǎng)的游戲,在一個(gè)口袋中裝有6個(gè)紅球和4個(gè)白球,這些球除顏色外完全相同,每次從中摸出一個(gè)球,摸出后不放回,共摸三次,如果前兩次摸出的球含有紅球且第三次摸出白球則中獎(jiǎng),其它情況不中獎(jiǎng),則這個(gè)游戲的中獎(jiǎng)概率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案