已知點(diǎn)A(2,4),B(4,2),C(0,1),求△ABC的面積.
考點(diǎn):兩點(diǎn)間距離公式的應(yīng)用,點(diǎn)到直線的距離公式
專題:直線與圓
分析:由兩點(diǎn)間距離公式可得|AB|,利用點(diǎn)斜式可得直線AB方程,利用點(diǎn)到直線的距離公式可得點(diǎn)C到直線AB的距離h,根據(jù)三角形面積公式可得答案.
解答: 解:設(shè)AB邊上的高為h,則S△ABC=
1
2
|AB|•h.
|AB|=
(4-2)2+(2-4)2
=
4+4
=2
2
,
AB邊上的高h(yuǎn)就是點(diǎn)C到AB的距離.
AB邊所在的直線方程為
y-2
4-2
=
x-4
2-4
,即x+y-6=0.
點(diǎn)C(0,1)到x+y-6=0的距離h=
|1-6|
2
=
5
2
,
因此,S△ABC=
1
2
|AB|•h=
1
2
×2
2
×
5
2
=5.
點(diǎn)評(píng):本題考查三角形面積公式、兩點(diǎn)間距離公式、點(diǎn)到直線的距離公式,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+2x+c(a,c∈N*),f(1)=5,6<f(2)<11,?x∈[
1
2
,
3
2
],f(x)-2mx≤1恒成立,則實(shí)數(shù)m的范圍是( 。
A、m≥0
B、m≥1
C、m≥
9
4
D、m≥
11
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)滿足f(0)=1,f(x-y)=f(x)-y(2x-y+1)恒成立,求f(x)表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在空間四邊形ABCD中,兩條對(duì)角線AC,BD互相垂直,且長(zhǎng)度分別為4和6,平行于這兩條對(duì)角線的平面與邊AB,BC,CD,DA分別相交于點(diǎn)E,F(xiàn),G,H,記四邊形EFGH的面積為y,設(shè)
BE
AB
=x
,則( 。
A、函數(shù)y=f(x)的值域?yàn)椋?,4]
B、函數(shù)y=f(x)的最大值為8
C、函數(shù)y=f(x)在(0,
2
3
)
上單調(diào)遞減
D、函數(shù)y=f(x)滿足f(x)=f(1-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,若A,B,C成等差數(shù)列,且AC=
6
,BC=2,則A=( 。
A、135°B、45°
C、30°D、45°或135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

兩直線3x+4y-8=0,6x+8y+11=0間的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知棱長(zhǎng)為2
3
的正四面體A-BCD,面ACD沿CD旋轉(zhuǎn)至面PCD.
(1)二面角A-CD-P的余弦值為何值時(shí),AP∥平面BCD;
(2)在第一問(wèn)的前提下,求直線AB與平面PCD所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線4x2-y2=64上一點(diǎn)P到它的一個(gè)焦點(diǎn)的距離為10,那么它到另一個(gè)焦點(diǎn)的距離等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定點(diǎn)F1(-1,0),F(xiàn)2(1,0),曲線E是以原點(diǎn)為頂點(diǎn)、F2為焦點(diǎn)且離心率為1的圓錐曲線,橢圓C與曲線E的交點(diǎn)為A,B,且點(diǎn)A到點(diǎn)F1,F(xiàn)2的距離之和為4.
(1)求橢圓C和曲線E的方程;
(2)在橢圓C和曲線E上是否存在這樣的點(diǎn)P,使得△PAB的面積為
8
6
9
?若存在,求出所有滿足條件的點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)若平行于x軸的直線分別與橢圓C和曲線E交于M(x1,y1),N(x2,y2)兩點(diǎn),且x1>x2,求△MNF2的周長(zhǎng)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案