19.若函數(shù)f(x)的圖象如圖所示,則f(x)的解析式可能是(  )
A.$f(x)=\frac{{{e^x}-1}}{{{x^2}-1}}$B.$f(x)=\frac{e^x}{{{x^2}-1}}$C.$f(x)=\frac{{{x^3}+x+1}}{{{x^2}-1}}$D.$f(x)=\frac{{{x^4}+x+1}}{{{x^2}-1}}$

分析 由題意,x=0,y<0,排除A,0>x>-1,x→-1,y→-∞,排除C,D選項(xiàng),f(-2)=5,f(-3)=$\frac{79}{8}$,不符合,排除D,即可得出結(jié)論.

解答 解:由題意,x=0,y<0,排除A,
0>x>-1,x→-1,y→-∞,排除C,
D選項(xiàng)中,f(-2)=5,f(-3)=$\frac{79}{8}$,不符合,排除D.
故選:B.

點(diǎn)評(píng) 本題考查函數(shù)的圖象與解析式,考查數(shù)形結(jié)合的數(shù)學(xué)思想,正確運(yùn)用排除法是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.交警隨機(jī)抽取了途經(jīng)某服務(wù)站的40輛小型轎車在經(jīng)過(guò)某區(qū)間路段的車速(單位:km/h),現(xiàn)將其分成六組為[60,65),[65,70),[70,75),[75,80),[80,85),[85,90]后得到如圖所示的頻率分布直方圖.
(Ⅰ)某小型轎車途經(jīng)該路段,其速度在70km/h以上的概率是多少?
(Ⅱ)若對(duì)車速在[60,65),[65,70)兩組內(nèi)進(jìn)一步抽測(cè)兩輛小型轎車,求至少有一輛小型轎車速度在[60,65)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)向量$\overrightarrow{a}$=(-1,2),$\overrightarrow$=(m,1),如果向量$\overrightarrow{a}$+2$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$平行,則$\overrightarrow{a}$+$\overrightarrow$=$(-\frac{3}{2},3)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.將函數(shù)$y=\frac{x-3}{x-2}$的圖象向左平移1個(gè)單位,再向下平移1個(gè)單位得到函數(shù)f(x),則函數(shù)f(x)的圖象與函數(shù)y=2sinπx(-2≤x≤4)的圖象的所有交點(diǎn)的橫坐標(biāo)之和等于(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知關(guān)于x的方程x2+4x+p=0(p∈R)的兩個(gè)根是x1,x2
(1)若x1為虛數(shù)且|x1|=5,求實(shí)數(shù)p的值;
(2)若|x1-x2|=2,求實(shí)數(shù)p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.美團(tuán)外賣和百度外賣兩家公司其“騎手”的日工資方案如下:美團(tuán)外賣規(guī)定底薪70元,每單抽成1元;百度外賣規(guī)定底薪100元,每日前45單無(wú)抽成,超出45單的部分每單抽成6元,假設(shè)同一公司的“騎手”一日送餐單數(shù)相同,現(xiàn)從兩家公司個(gè)隨機(jī)抽取一名“騎手”并記錄其100天的送餐單數(shù),得到如下條形圖:

(Ⅰ)求百度外賣公司的“騎手”一日工資y(單位:元)與送餐單數(shù)n的函數(shù)關(guān)系;
(Ⅱ)若將頻率視為概率,回答下列問(wèn)題:
①記百度外賣的“騎手”日工資為X(單位:元),求X的分布列和數(shù)學(xué)期望;
②小明擬到這兩家公司中的一家應(yīng)聘“騎手”的工作,如果僅從日收入的角度考慮,請(qǐng)你利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為他作出選擇,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖所示,在直角坐標(biāo)系xOy中,拋物線C:y2=4x,Q(-1,0),設(shè)點(diǎn)P是第一象限內(nèi)拋物線C上一點(diǎn),且PQ為拋物線C的切線.
(1)求點(diǎn)P的坐標(biāo);
(2)圓C1、C2均與直線OP相切于點(diǎn)P,且均與x軸相切,求圓C1、C2的半徑之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.在直角坐標(biāo)系xOy中,設(shè)拋物線E:y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線為直線l,點(diǎn)A、B在直線l上,點(diǎn)M為拋物線E第一象限上的點(diǎn),△ABM是邊長(zhǎng)為$\frac{8}{3}$$\sqrt{3}$的等邊三角形,直線MF的傾斜角為60°.
(1)求拋物線E的方程;
(2)如圖,直線m過(guò)點(diǎn)F交拋物線E于C、D兩點(diǎn),Q(2,0),直線CQ、DQ分別交拋物線E于G、H兩點(diǎn),設(shè)直線CD、GH的斜率分別為k1、k2,求$\frac{{k}_{1}}{{k}_{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.現(xiàn)用隨機(jī)模擬方法近似計(jì)算積分${∫}_{0}^{2}$$\sqrt{1-\frac{{x}^{2}}{4}}$dx,先產(chǎn)生兩組(每組1000個(gè))在區(qū)間[0,2]上的均勻隨機(jī)數(shù)x1,x2,x3,…,x1000和y1,y2,y3,…,y1000,由此得到1000個(gè)點(diǎn)(xi,yi)(i=1,2,…,1000),再數(shù)出其中滿足$\frac{{x}_{i}^{2}}{4}$+${y}_{i}^{2}$≤1(i=1,2,…,1000)的點(diǎn)數(shù)400,那么由隨機(jī)模擬方法可得積分${∫}_{0}^{2}$$\sqrt{1-\frac{{x}^{2}}{4}}$dx的近似值為(  )
A.1.4B.1.6C.1.8D.2.0

查看答案和解析>>

同步練習(xí)冊(cè)答案