Loading [MathJax]/jax/output/CommonHTML/jax.js
19.若曲線y=12ex2與曲線y=alnx在它們的公共點(diǎn)P(s,t)處具有公共切線,則實(shí)數(shù)a=1.

分析 求出兩個(gè)函數(shù)的導(dǎo)數(shù)然后求出公共點(diǎn)的斜率,利用斜率相等,有公共點(diǎn)解方程即可求出a的值.

解答 解:曲線y=12ex2的導(dǎo)數(shù)為:y′=xe,
在P(s,t)處的斜率為:k=se
曲線y=alnx的導(dǎo)數(shù)為:y′=ax,
在P(s,t)處的斜率為:k=as
曲線y=12ex2與曲線y=alnx在它們的公共點(diǎn)P(s,t)處具有公共切線,
可得se=as,并且t=12es2,t=alns,
{se=as12es2=alns,解得lns=12,解得s2=e.
可得a=1.
故答案為:1.

點(diǎn)評(píng) 本題考查函數(shù)的導(dǎo)數(shù),導(dǎo)數(shù)的幾何意義,切線的斜率以及方程思想的運(yùn)用,考查計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,棱柱ABCD-A1B1C1D1中,底面ABCD是平行四邊形,側(cè)棱AA1⊥底面ABCD,AB=1,AC=3,BC=BB1=2.
(Ⅰ)求證:AC⊥平面ABB1A1;
(Ⅱ)求二面角A-C1D-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知{an}是等差數(shù)列,其中a1=13,a4=7.
(1)求{an}的通項(xiàng)公式;
(2)求{an}前n項(xiàng)和為Sn,并求出Sn的最大值及對(duì)應(yīng)項(xiàng);
(3)求數(shù)列{|an|}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知3a=4b=5c=6,求1a+1+1c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.“m>n>0”是“方程mx2+ny2=1表示焦點(diǎn)在y軸上的橢圓的”( �。�
A.必要非充分條件B.充分非必要條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖所示,橢圓x29+y24=1的左,右頂點(diǎn)分別為A,A′,線段CD是垂直于橢圓長軸的弦,連接AC,DA′相交于點(diǎn)P,則點(diǎn)P的軌跡方程為x29-y24=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.將函數(shù)y=sin2x的圖象向右平移π12個(gè)單位長度后,再將函數(shù)圖象上各點(diǎn)的橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變)后得到的圖象的解析式為y=sin(x-π6).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.讀下的程序,并回答問題.

該程序的作用是輸入x的值,輸出y的值.
(1)畫出該程序?qū)?yīng)的程序框圖.
(2)若要使輸入的x值與輸出的y值相等,這樣的x值有幾個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知數(shù)列{an}滿足a1=37,an+1=3an4an+1,n∈N+
(1)求證:數(shù)列{1an-2}是等比數(shù)列,并且求出數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{nan}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹