分析 (1)將a=0代入f(x),求出f(x)的導數(shù),得到f′(x)=3,解得x的值,求出切點坐標,代入求出m的值即可;
(2)假設函數(shù)f(x)在[1,3]上不存在單調遞增區(qū)間,必有g(x)≤0,得到關于a的不等式組,解出即可.
解答 解:(1)當a=0時,f(x)=lnx+x2,x∈(0,+∞),
f′(x)=$\frac{1}{x}$+2x>0,
令f′(x)=3,解得:x=1或x=$\frac{1}{2}$,
代入f(x)得切點坐標為(1,1),或($\frac{1}{2}$,$\frac{1}{4}$-ln2),
將切點坐標代入直線y=3x+m,解得:m=-2或m=-$\frac{5}{4}$-ln2;
(2)f′(x)=$\frac{1}{x}$+2x-2a=$\frac{{2x}^{2}-2ax+1}{x}$,x∈[1,3],
設g(x)=2x2-2ax+1,
假設函數(shù)f(x)在[1,3]上不存在單調遞增區(qū)間,必有g(x)≤0,
于是$\left\{\begin{array}{l}{g(1)=3-2a≤0}\\{g(3)=19-6a≤0}\end{array}\right.$,解得:a≥$\frac{19}{6}$,
故要使函數(shù)f(x)在[1,3]上存在單調遞增區(qū)間,
則a的范圍是(-∞,$\frac{19}{6}$).
點評 本題考查了函數(shù)的單調性問題,考查曲線的切線方程以及導數(shù)的應用,是一道中檔題.
科目:高中數(shù)學 來源:2017屆四川巴中市高中高三畢業(yè)班10月零診理數(shù)試卷(解析版) 題型:解答題
某中學舉行了一次“環(huán)保知識競賽”活動. 為了了解本次競賽學生成績情況,從中抽取了部分學生的分數(shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為)進行統(tǒng)計. 按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分數(shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).
(1)求樣本容量和頻率分布直方圖中的,的值;
(2)在選取的樣本中,從競賽成績是80分以上(含80分)的同學中隨機抽取3名同學到市政廣場參加環(huán)保知識宣傳的志愿者活動,設表示所抽取的3名同學中得分在[80,90)的學生人數(shù),求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [1+$\frac{π}{6}$,2+$\frac{π}{6}$) | B. | [1+$\frac{π}{3}$,2+$\frac{π}{3}$) | C. | [$\frac{1}{2}$+$\frac{π}{6}$,1+$\frac{π}{6}$) | D. | [$\frac{1}{2}$+$\frac{π}{3}$,1+$\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com