14.已知θ∈(0,$\frac{π}{4}$),且sinθ-cosθ=-$\frac{\sqrt{14}}{4}$,則$\frac{2co{s}^{2}θ-1}{sin(\frac{π}{4}-θ)}$等于$\frac{3}{2}$.

分析 由已知的等式記作①,利用同角三角函數(shù)間的基本關(guān)系列出關(guān)系式,記作②,再根據(jù)θ為銳角,聯(lián)立①②求出sinθ和cosθ的值,進而利用二倍角的余弦函數(shù)公式及兩角和與差的正弦函數(shù)公式分別求出所求式子的分子與分母,代入即可求出所求式子的值.

解答 解:由sinθ-cosθ=-$\frac{\sqrt{14}}{4}$,①,
又sin2θ+cos2θ=1②,且θ∈(0,$\frac{π}{4}$),
聯(lián)立①②解得:sinθ=$\frac{3\sqrt{2}-\sqrt{14}}{8}$,cosθ=$\frac{\sqrt{14}+3\sqrt{2}}{8}$,
∴則$\frac{2co{s}^{2}θ-1}{sin(\frac{π}{4}-θ)}$═$\frac{co{s}^{2}θ-si{n}^{2}θ}{\frac{\sqrt{2}}{2}(cosθ-sinθ)}$
=$\frac{\sqrt{2}(cosθ-sinθ)(cosθ+sinθ)}{cosθ-sinθ}$=$\sqrt{2}(cosθ+sinθ)$
=$\sqrt{2}×(\frac{\sqrt{14}+3\sqrt{2}}{8}+\frac{3\sqrt{2}-\sqrt{14}}{8})$=$\frac{3}{2}$.

點評 本題考查了二倍角的余弦函數(shù)公式,兩角和與差的正弦函數(shù)公式,以及同角三角函數(shù)間的基本關(guān)系,熟練掌握公式是解本題的關(guān)鍵,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.若將函數(shù)y=cos 2x的圖象向左平移$\frac{π}{12}$個單位長度,則平移后圖象的對稱軸為(  )
A.x=$\frac{kπ}{2}$-$\frac{π}{6}$(k∈Z)B.x=$\frac{kπ}{2}$+$\frac{π}{6}$(k∈Z)C.x=$\frac{kπ}{2}$-$\frac{π}{12}$(k∈Z)D.x=$\frac{kπ}{2}$+$\frac{π}{12}$(k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知l1的斜率是x,l2過點A(-1,-3),B(3,5),且l1∥l2,則log${\;}_{\frac{1}{8}}$x=-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.能夠把圓x2+y2=R2的周長和面積同時平分為相等的兩部分的函數(shù)稱為該圓的“和諧函數(shù)”,下列函數(shù)不是圓x2+y2=4的“和諧函數(shù)”的是( 。
A.f(x)=2x+$\frac{1}{{2}^{x}}$B.f(x)=tan$\frac{x}{2}$C.f(x)=x3+xD.f(x)=ln$\frac{4-x}{4+x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.數(shù)列{an}的前n項和為Sn,若an=$\frac{1}{n(n+1)}$,則S4=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知命題p:對任意x∈R,總有3x≤0;命題q:“x>2”是“x>4”的充分不必要條件,則下列命題為真命題的是(  )
A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{1-lo{g}_{2}x,x>0}\end{array}\right.$,則f(f(-2))=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.定義在R上的增函數(shù)y=f(x)對任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)求f(0);
(2)求證:f(x)為奇函數(shù);
(3)若f(k•3x)+f(3x-9x-4)<0對任意x∈R恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知cosα=-$\frac{3}{5}$,求$\frac{cos(α-\frac{7π}{2})+2sin(3π-α)}{csc(3π+α)+sec(\frac{5π}{2}+α)}$的值.

查看答案和解析>>

同步練習冊答案