設(shè)實(shí)數(shù)x,y滿足線性約束條件
x+y≤3
x-y≥1
y≥0
,則目標(biāo)函數(shù)z=2x+y的最大值為
 
考點(diǎn):簡單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對應(yīng)的平面區(qū)域,設(shè)z=x+y,利用數(shù)形結(jié)合即可得到z的最大值.
解答: 解:作出不等式組對應(yīng)的平面區(qū)域,如圖:
由z=2x+y得y=-2x+z,
平移直線y=-2x+z由圖象可知當(dāng)直線y=-2x+z經(jīng)過點(diǎn)A(3,0)時,直線y=-x+z的截距最大,
此時z最大,此時z的最大值為z=2×3=6,
故答案為:6.
點(diǎn)評:本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

我們把離心率之差的絕對值小于
1
2
的兩條雙曲線稱為“相近雙曲線”.已知雙曲線C:
x2
4
-
y2
12
=1,則下列雙曲線中與C是“相近雙曲線”的為( 。
A、x2-y2=1
B、x2-
y2
2
=1
C、y2-2x2=1
D、
y2
9
-
x2
72
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,f(x)=-
1
3
x3+ax+(1-a)lnx

(Ⅰ)若a=0,求f(x)的極大值;
(Ⅱ)若函數(shù)y=f(x)有零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

Ak={x|x=kt+
1
kt
1
k2
≤t≤1},其中k=2,3,…,2014,則所有Ak的交集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

身高從矮到高的甲、乙、丙、丁、戊5人排成高矮相間的一個隊(duì)形,則甲丁不相鄰的不同的排法共有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足
5x+2y-18≤0
2x-y≥0
x+y-3≥0
,若直線kx-y+2=0經(jīng)過該可行域,則k的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有n粒球(n≥2,n∈N*),任意將它們分成兩堆,求出兩堆球的乘積,再將其中一堆任意分成兩堆,求這出兩堆球的乘積,如此下去,每次任意將其中一堆分成兩堆,求這出兩堆球的乘積,直到每堆球都不能再分為止,記所有乘積之和為Sn.例如對于4粒球有如下兩種分解:
(4)→(1,3)→(1,1,2)→(1,1,1,1),此時S4=1×3+1×2+1×1=6;
(4)→(2,2)→(1,1,2)→(1,1,1,1),此時S4=2×2+1×1+1×1=6.
于是發(fā)現(xiàn)S4為定值,請你研究Sn的規(guī)律,歸納Sn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知m是平面α的一條斜線,點(diǎn)A∈α,l為過點(diǎn)A的一條動直線,那么下列情形不可能出現(xiàn)的是( 。
A、l∥m,l⊥α
B、l⊥m,l⊥α
C、l⊥m,l∥α
D、l∥m,l∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在復(fù)平面內(nèi),點(diǎn)A表示復(fù)數(shù)z,則圖中表示z的共軛復(fù)數(shù)的點(diǎn)是( 。
A、AB、BC、CD、D

查看答案和解析>>

同步練習(xí)冊答案