3.設(shè)變量x、y滿(mǎn)足下列條件$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y+1≥0}\\{y≥0}\end{array}\right.$,則z=xy的最大值為1.

分析 作出可行域(如圖△ABC),通過(guò)討論(x,y)所在的區(qū)域,然后求解xy最值.

解答 解:作出$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y+1≥0}\\{y≥0}\end{array}\right.$,所對(duì)應(yīng)的可行域(如圖△ABC),
變形目標(biāo)函數(shù)可得z=xy,當(dāng)點(diǎn)(x,y)在三角形BCD區(qū)域時(shí),
B處xy最大,$\left\{\begin{array}{l}{x+y-2=0}\\{x-y+1=0}\end{array}\right.$,解得x=$\frac{1}{2}$,y=$\frac{3}{2}$,此時(shí)xy=$\frac{3}{4}$,
當(dāng)(x,y)在三角形ABD時(shí),(x,y)在線(xiàn)段AB上取得最大值,
xy=x(2-x)=2x-x2,x∈[$\frac{1}{2}$,2],
2x-x2=-(x-1)2+1,當(dāng)x=1時(shí),xy取得最大值:1.
故答案為:1.

點(diǎn)評(píng) 本題考查簡(jiǎn)單線(xiàn)性規(guī)劃,準(zhǔn)確作圖以及分類(lèi)討論,二次函數(shù)的最值是解決問(wèn)題的關(guān)鍵,屬中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)f(x)=x3+ax+$\frac{1}{4}$,若x軸為曲線(xiàn)y=f(x)的切線(xiàn),則a的值為-$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.某籃球隊(duì)甲、乙兩名運(yùn)動(dòng)員練習(xí)罰球,每人練習(xí)10組,每組罰球40個(gè),命中個(gè)數(shù)的莖葉圖如圖,則下面結(jié)論中錯(cuò)誤是④.(填序號(hào))
①甲的極差是29;②乙的眾數(shù)是21;③甲罰球命中率比乙高;④甲的中位數(shù)是24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知曲線(xiàn)C1、C2的極坐標(biāo)方程分別為ρ=2sinθ,$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)=-1,則曲線(xiàn)C1上的點(diǎn)與曲線(xiàn)C2上的點(diǎn)的最短距離為$\sqrt{2}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.設(shè)函數(shù)f(x)=|x+1|-|2x-4|;
(Ⅰ)解不等式f(x)≥1;
(Ⅱ)若對(duì)?x∈R,都有f(x)+3|x-2|>m,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.如圖,直三棱柱ABC-A1B1C1中,AC=BC=AA1=3,AC⊥BC,點(diǎn)M在線(xiàn)段AB上.
(1)若M是AB中點(diǎn),證明AC1∥平面B1CM;
(2)當(dāng)BM=$\sqrt{2}$時(shí),求直線(xiàn)C1A1與平面B1MC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在△ABC中,已知$\sqrt{3}$BC•cosC=AB•sinA.
(1)求∠C的大。
(2)若AB=$\sqrt{7}$,且△ABC的面積為$\frac{3\sqrt{3}}{4}$,求AC+BC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.等差數(shù)列{an}的前n項(xiàng)和為Sn,已知S3=a1+4a2,a5=7,則a1=(  )
A.1B.-1C.$\frac{1}{9}$D.-$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知點(diǎn)A(6,2),B(3,2),動(dòng)點(diǎn)M滿(mǎn)足|MA|=2|MB|.
(1)求點(diǎn)M的軌跡方程;
(2)設(shè)M的軌跡與y軸的交點(diǎn)為P,過(guò)P作斜率為k的直線(xiàn)l與M的軌跡交于另一點(diǎn)Q,若C(1,2k+2),求△CPQ面積的最大值,并求出此時(shí)直線(xiàn)l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案