8.函數(shù)$f(x)={a^{-{x^2}+3x+2}}(0<a<1)$的單調(diào)遞增區(qū)間是($\frac{3}{2}$,+∞).

分析 令t=-x2+3x+2,則f(x)=at,由0<a<1,可得本題即求函數(shù)t的減區(qū)間,再利用二次函數(shù)的性質(zhì)得出結(jié)論.

解答 解:令t=-x2+3x+2,則f(x)=at,∵0<a<1,
故本題即求函數(shù)t的減區(qū)間,再利用二次函數(shù)的性質(zhì)可得t的減區(qū)間為($\frac{3}{2}$,+∞),
故答案為:$(\frac{3}{2},+∞)$.

點(diǎn)評(píng) 本題主要考查復(fù)合函數(shù)的單調(diào)性,指數(shù)函數(shù)、二次函數(shù)的性質(zhì),體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知圓O:x2+y2=2,直線l過(guò)兩點(diǎn)A(1,-$\frac{3}{2}$),B(4,0)
(1)求直線l的方程;
(2)若P是直線l上的動(dòng)點(diǎn),過(guò)P作圓O的兩條切線PC,PD,切點(diǎn)為C,D,求證:直線CD過(guò)定點(diǎn),并求出定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)$f(x)=x+\frac{a}{x}-2lnx$.
(1)當(dāng)a=0時(shí),求f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)是否存在實(shí)數(shù)a,當(dāng)0<x≤2時(shí),函數(shù)f(x)圖象上的點(diǎn)都在$\left\{\begin{array}{l}0<x≤2\\ x-y≥0\end{array}\right.$所表示的平面區(qū)域(含邊界)?若存在,求出a的值組成的集合;否則說(shuō)明理由;
(3)若f(x)有兩個(gè)不同的極值點(diǎn)m,n(m>n),求過(guò)兩點(diǎn)M(m,f(m)),N(n,f(n))的直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,過(guò)F1且與x軸垂直的直線交橢圓于A、B兩點(diǎn),直線AF2與橢圓的另一個(gè)交點(diǎn)為C,若S△ABC=3S${\;}_{△BC{F}_{2}}$,則橢圓的離心率為$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知命題p:不等式x2-ax-8>0對(duì)任意實(shí)數(shù)x∈[2,4]恒成立;命題q:存在實(shí)數(shù)θ滿足$\frac{4}{a-1}≤sinθ-2$;命題r:不等式ax2+2x-1>0有解.
(1)若p∧q為真命題,求a的取值范圍.
(2)若命題p、q、r恰有兩個(gè)是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知數(shù)列{an}滿足an+2=an+1-an,且a1=2,a2=3,則a2017的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=x2-2x+alnx(a∈R).
(Ⅰ)當(dāng)a=2時(shí),求函數(shù)f(x)在(1,f(1))處的切線方程;
(Ⅱ)當(dāng)a>0時(shí),若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2),不等式f(x1)≥mx2恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.如圖在空間四邊形OABC中,點(diǎn)M在OA上,且OM=2MA,N為BC中點(diǎn),則$\overrightarrow{MN}$等于(  )
A.$\frac{1}{2}\overrightarrow{OA}-\frac{2}{3}\overrightarrow{OB}+\frac{1}{2}\overrightarrow{OC}$B.$-\frac{2}{3}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}+\frac{1}{2}\overrightarrow{OC}$C.$\frac{1}{2}\overrightarrow{OA}+\frac{1}{2}\overrightarrow{OB}-\frac{1}{2}\overrightarrow{OC}$D.$\frac{2}{3}\overrightarrow{OA}+\frac{2}{3}\overrightarrow{OB}-\frac{1}{2}\overrightarrow{OC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若復(fù)數(shù)(m2-3m)+(m2-5m+6)i(m∈R))是純虛數(shù),則m的值為(  )
A.0B.2C.0或3D.2或3

查看答案和解析>>

同步練習(xí)冊(cè)答案