A. | $x=-\frac{π}{2}$ | B. | $x=-\frac{π}{4}$ | C. | $x=\frac{π}{4}$ | D. | $x=\frac{π}{8}$ |
分析 利用誘導(dǎo)公式、函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得變換后所得函數(shù)的解析式,再利用余弦函數(shù)的圖象的對(duì)稱性,求得得圖象的一條對(duì)稱軸方程.
解答 解:把函數(shù)$y=sin(4x+\frac{π}{6})$圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),可得y=sin(2x+$\frac{π}{6}$)的圖象,
再將圖象向右平移$\frac{π}{3}$個(gè)單位,可得得y=sin(2x-$\frac{2π}{3}$+$\frac{π}{6}$)=-cos2x 的圖象.
令2x=kπ,可得x=$\frac{kπ}{2}$,k∈Z,令k=-1,可得所得圖象的一條對(duì)稱軸方程為x=-$\frac{π}{2}$,
故選:A.
點(diǎn)評(píng) 本題主要考查誘導(dǎo)公式、函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,余弦函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(-\frac{π}{2},\;-\frac{π}{3})$ | B. | $(-\frac{5π}{6},\;0)$ | C. | $(-\frac{π}{2},\;\frac{π}{3})$ | D. | $(-\frac{π}{6},\;0)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4}{15}$ | B. | $\frac{12}{25}$ | C. | $\frac{8}{15}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=x2 | B. | f(x)=2x | C. | f(x)=3-x | D. | f(x)=cosx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com