16.已知3x=4,y=log${\;}_{\sqrt{3}}}$$\frac{27}{4}$,則x+$\frac{y}{2}$=3.

分析 利用指數(shù)運算法則求出x,然后代入所求的表達式,化簡求解即可.

解答 解:3x=4,可得x=log34,y=log${\;}_{\sqrt{3}}}$$\frac{27}{4}$=2log3$\frac{27}{4}$,
x+$\frac{y}{2}$=log34+log3$\frac{27}{4}$=log327=3.
故答案為:3.

點評 本題考查指數(shù)已經(jīng)對數(shù)運算法則的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知集合A={x∈R||x+2|<3},集合B={x∈R|(x-m)(x-2)<0},
(Ⅰ)若A⊆B,求實數(shù)m的取值范圍;
(Ⅱ)若A∩B=(-1,n),求實數(shù)m,n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)數(shù)列{an}滿足:a1=1,a2=2,an+2=$\frac{{a}_{n}({a}_{n+1}^{2}+1)}{{a}_{a}^{2}+1}$(n≥1,n∈N*),令bn=$\frac{{{a_{n+1}}}}{{{a_n}+\frac{1}{a_n}}}$.
(1)求證:數(shù)列{bn}是常數(shù)列;
(2)求證:當n≥2時,2<an2-a2n-1≤3;
(3)求a2015的整數(shù)部分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列函數(shù)中,既是奇函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的函數(shù)為( 。
A.y=x-1B.y=lnxC.y=x3D.y=|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.下列命題中所有正確命題的序號為①③④.
①若方程a2x2+(a+2)y2+2ax+a=0表示圓,那么實數(shù)a=-1;
②已知函數(shù)f(x)=($\frac{1}{2}$)x的圖象與函數(shù)y=g(x)的圖象關(guān)于直線y=x對稱,令h(x)=g(1-x2),則h(x)的圖象關(guān)于原點對稱;
③在正方體ABCD-A1B1C1D1中,E、F分別是AB和AA1的中點,則直線CE、D1F、DA三線共點;
④冪函數(shù)的圖象不可能經(jīng)過第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.給出下列命題:
(1)從A處望B處的仰角為α,從B處望A處的俯角為β,則α,β的關(guān)系為α=β;
(2)俯角是鉛垂線與視線所成的角,其范圍為[0,$\frac{π}{2}$];
(3)方位角與方向角其實是一樣的,均是確定觀察點與目標點之間的位置關(guān)系;
(4)方位角大小的范圍是[0,2π),方向角大小的范圍一般是[0,$\frac{π}{2}$);
其中正確的是(1)(3)(4) (填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.f′(x0)=0是函數(shù)f(x)在點x0處取極值的( 。
A.充分不必要條件B.既不充分又不必要條件
C.充要條件D.必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)y=$\sqrt{\frac{1+x}{1-x}}$+lg(3-4x+x2)的定義域為M.
(1)求M;
(2)當x∈M時,求f(x)=4x+2x+2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(1,5),則2$\overrightarrow{a}$+$\overrightarrow$的坐標為(5,7).

查看答案和解析>>

同步練習(xí)冊答案