求函數(shù)y=
4x2+4x-15
的定義域.
考點(diǎn):函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)被開方數(shù)大于等于0,列出方程式解出即可.
解答: 解:由4x2+4x-15≥0
得x∈(-∞,-
5
2
]∪[
3
2
,+∞)
,
∴函數(shù)的定義域?yàn)?span id="mzh3lal" class="MathJye">(-∞,-
5
2
]∪[
3
2
,+∞).
點(diǎn)評(píng):本題考查了函數(shù)的定義域及其求法,考查了一元二次不等式的解法,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a=21.2,b=(
1
2
-0.8,c=log32,則(  )
A、a>b>c
B、a>c>b
C、c>a>b
D、b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a為常數(shù),函數(shù)f(x)=x2+aln(1+x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2),則( 。
A、f(x2)<
1-2ln2
4
B、f(x2)>
1-2lnx
4
C、f(x2)>
2ln2+3
8
D、f(x2)<
3ln2+4
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,b>0,a+b=1,則
1
a2
+
1
b2
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx+1
(Ⅰ)若x>0時(shí),函數(shù)y=f(x)的圖象恒在直線y=kx上方,求實(shí)數(shù)k的取值范圍;
(Ⅱ)證明:當(dāng)時(shí)n∈N*,ln(n+1)>
1
2
+
1
3
+
1
4
+…+
1
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x>0時(shí),求證:ex>lnx+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓柱OO1內(nèi)有一個(gè)三棱柱ABC-A1B1C1,三棱柱的底面為圓柱底面的內(nèi)接三角形,且AB是圓O直徑,AA1=AC=CB=2.E,F(xiàn)分別為AC,BC上的動(dòng)點(diǎn),且CE=BF.
(Ⅰ)證明:平面A1ACC1⊥平面B1BCC1;
(Ⅱ)設(shè)CE=BF=x,當(dāng)x為何值時(shí),三棱錐C1-ECF的體積最大,最大值為多少?
(Ⅲ)若F為線段BC的中點(diǎn),請(qǐng)問CC1上是否存在點(diǎn)M,使得B1M⊥C1O,若存在請(qǐng)求出C1M的長(zhǎng),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)化簡(jiǎn)lg22+lg25+2lg2•lg5+eln2+(-8) 
2
3
;
(2)若loga
4
5
<1(a>0,且a≠1),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)用定義法證明函數(shù)f(x)=
1-x
x-
2
在(
2
,+∞)上是增函數(shù);
(2)判斷函數(shù)g(x)=
ex+e-x
ex-e-x
的奇偶性,并予以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案