14.若點(diǎn)O為△ABC外接圓的圓心,⊙O的半徑r=2.5,M為△ABC的垂心,弦AB=3,則$\overrightarrow{MO}•\overrightarrow{BC}$的最大值為3.

分析 建立空間坐標(biāo)系,根據(jù)三角形外心和垂心的性質(zhì),結(jié)合數(shù)量積的運(yùn)算即可得到結(jié)論.

解答 解:建立以O(shè)為圓心,AB的中垂線所在的直線為y軸的直角坐標(biāo)系如圖,
∵弦AB=3,⊙O的半徑r=2.5,
∴AD=$\frac{3}{2}$,OD=$\sqrt{O{A}^{2}-A{D}^{2}}$=$\sqrt{(\frac{5}{2})^{2}-(\frac{3}{2})^{2}}=2$,
即A($\frac{3}{2}$,2),B(-$\frac{3}{2}$,2),
則$\overrightarrow{MO}•\overrightarrow{BC}$=($\overrightarrow{MA}+\overrightarrow{AO}$)•$\overrightarrow{BC}$=$\overrightarrow{MA}$•$\overrightarrow{BC}$+$\overrightarrow{AO}$•$\overrightarrow{BC}$,
∵M(jìn)是垂心,∴$\overrightarrow{MA}$•$\overrightarrow{BC}$=0,
即$\overrightarrow{MO}•\overrightarrow{BC}$=$\overrightarrow{MA}$•$\overrightarrow{BC}$+$\overrightarrow{AO}$•$\overrightarrow{BC}$=$\overrightarrow{AO}$•$\overrightarrow{BC}$,
設(shè)C($\frac{5}{2}$cosα,$\frac{5}{2}$sinα),
則$\overrightarrow{AO}$=(-$\frac{3}{2}$,-2),$\overrightarrow{BC}$=($\frac{5}{2}$cosα+$\frac{3}{2}$,$\frac{5}{2}$sinα-2),
則$\overrightarrow{AO}$•$\overrightarrow{BC}$=(-$\frac{3}{2}$,-2)•($\frac{5}{2}$cosα+$\frac{3}{2}$,$\frac{5}{2}$sinα-2)
=-$\frac{3}{2}$×($\frac{5}{2}$cosα+$\frac{3}{2}$)-2×($\frac{5}{2}$sinα-2)
=-$\frac{15}{4}$cosα-5sinα+$\frac{7}{4}$
=$-\frac{5}{4}$sin(α+φ)+$\frac{7}{4}$,其中φ為參數(shù),
則當(dāng)sin(α+φ)=-1,$-\frac{5}{4}$sin(α+φ)+$\frac{7}{4}$取得最大值$\frac{5}{4}$+$\frac{7}{4}$=3,
故答案為:3

點(diǎn)評(píng) 本題主要考查數(shù)量積的應(yīng)用,根據(jù)條件建立直角坐標(biāo)系,利用數(shù)量積的運(yùn)算是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知奇函數(shù)y=f(x)的導(dǎo)函數(shù)f′(x)<0在R恒成立,且x,y滿足不等式f(x2-2x)+f(y2-2y)≥0,則x2+y2的取值范圍是( 。
A.$[0,2\sqrt{2}]$B.[0,2]C.[1,2]D.[0,8]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)y=f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≥0時(shí),f(x)=$\left\{\begin{array}{l}\frac{1}{16}{x^2}(0≤x≤2)\\{(\frac{1}{2})^x}(x>2)\end{array}$,若關(guān)于x的方程[f(x)]2+af(x)+b=0,a,b∈R有且僅有6個(gè)不同實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是( 。
A.(-$\frac{5}{2}$,-$\frac{1}{4}$)B.(-$\frac{1}{2}$,-$\frac{1}{4}$)C.(-$\frac{1}{2}$,-$\frac{1}{4}$)∪(-$\frac{1}{4}$,-$\frac{1}{8}$)D.(-$\frac{1}{2}$,-$\frac{1}{8}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=lnx-$\frac{1}{2}$ax2-bx(a≠0)
(1)若b=2,若y=f(x)存在單調(diào)遞減區(qū)間,求a的取值范圍;
(2)若函數(shù)y=f(x)的圖象與x軸交于A,B兩點(diǎn),線段AB的中點(diǎn)的橫坐標(biāo)為x0,證明:f′(x0)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示,某班一次數(shù)學(xué)測(cè)試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,其中,頻率分布直方圖的分組區(qū)間分別為[50,60),[60,70),[70,80),[80,90),[90,100),據(jù)此解答如下問題.

(1)求全班人數(shù)及分?jǐn)?shù)在[80,100]之間的頻率;
(2)現(xiàn)從分?jǐn)?shù)在[80,100]之間的試卷中任取 3 份分析學(xué)生失分情況,設(shè)抽取的試卷分?jǐn)?shù)在[90,100]的份數(shù)為 X,求 X 的分布列和數(shù)學(xué)望期.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在Rt△ABC中,∠C=90°,AC=4,BC=3,點(diǎn)D在邊BC上,橢圓G以A,D為焦點(diǎn),且經(jīng)過B,C,現(xiàn)以線段AD所在直線為x軸,線段AD的中點(diǎn)O為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系.
(1)求橢圓G的方程;
(2)Q($\frac{\sqrt{5}}{2}$,1)為橢圓G內(nèi)的一定點(diǎn),點(diǎn)P是橢圓上的一動(dòng)點(diǎn),求PQ+PD的最值;
(3)設(shè)橢圓G分別與x,y正半軸交于M,N兩點(diǎn),且y=kx(k>0)與橢圓G相交于E、F兩點(diǎn),求四邊形MENF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知兩點(diǎn)A(1,0),B(1,$\sqrt{3}$),O為坐標(biāo)原點(diǎn),點(diǎn)C在第二象限,且∠AOC=120°,設(shè)$\overrightarrow{OC}$=-2$\overrightarrow{OA}$+λ$\overrightarrow{OB}$(λ∈R)則λ=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,△ABC中,∠ABC=90°,以AB為直徑的圓O交AC于點(diǎn)E,點(diǎn)D是BC邊的中點(diǎn),連接OD交圓O于點(diǎn)M.
(1)求證:O、B、D、E四點(diǎn)共圓;
(2)求證:AB+AC=$\frac{2D{E}^{2}}{DM}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求函數(shù)f(x)=sinx+cosx+sinxcosx的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案