【題目】已知定義在R上的函數g(x)=f(x)﹣x3 , 且g(x)為奇函數
(1)判斷函數f(x)的奇偶性;
(2)若x>0時,f(x)=2x , 求當x<0時,函數g(x)的解析式.
【答案】
(1)解:∵定義在R上的函數g(x)=f(x)﹣x3,且g(x)為奇函數,
∴f(x)=g(x)+x3,故f(﹣x)=g(﹣x)+(﹣x)3=﹣g(x)﹣x3=﹣f(x),
∴函數f(x)為奇函數;
(2)解:∵x>0時,f(x)=2x,∴g(x)=2x﹣x3,
當x<0時,﹣x>0,故g(﹣x)=2﹣x﹣(﹣x)3,
由奇函數可得g(x)=﹣g(﹣x)=﹣2﹣x﹣x3.
【解析】(1)結合題意由函數奇偶性的定義可得;(2)可得x>0時g(x)=2x﹣x3 , 當x<0時,﹣x>0,整體代入由函數的奇偶性可得.
【考點精析】利用函數的奇偶性對題目進行判斷即可得到答案,需要熟知偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱.
科目:高中數學 來源: 題型:
【題目】甲、乙、丙三人中,一人是律師,一人是醫(yī)生,一人是記者.已知丙的年齡比醫(yī)生大;甲的年齡和記者不同;記者的年齡比乙小,根據以上情況,下列判斷正確的是( 。
A.甲是律師,乙是醫(yī)生,丙是記者
B.甲是醫(yī)生,乙是記者,丙是律師
C.甲是醫(yī)生,乙是律師,丙是記者
D.甲是記者,乙是醫(yī)生,丙是律師
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)為奇函數,且當x>0時,f(x)=x2﹣2x+3,則當x<0時,f(x)的解析式( )
A.f(x)=﹣x2+2x﹣3
B.f(x)=﹣x2﹣2x﹣3
C.f(x)=x2﹣2x+3
D.f(x)=﹣x2﹣2x+3
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有下列四個命題: ①“若a2+b2=0,則a,b全為0”的逆否命題;
②“全等三角形的面積相等”的否命題;
③“若“q≤1”,則x2+2x+q=0有實根”的逆否命題;
④“矩形的對角線相等”的逆命題.
其中真命題為( )
A.①②
B.①③
C.②③
D.③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2019年10月1日上午,慶祝中華人民共和國成立70周年閱兵儀式在天安門廣場隆重舉行.這次閱兵不僅展示了我國的科技軍事力量,更是讓世界感受到了中國的日新月異.今年的閱兵方陣有一個很搶眼,他們就是院?蒲蟹疥.他們是由軍事科學院、國防大學、國防科技大學聯合組建.若已知甲、乙、丙三人來自上述三所學校,學歷分別有學士、碩士、博士學位.現知道:①甲不是軍事科學院的;②來自軍事科學院的不是博士;③乙不是軍事科學院的;④乙不是博士學位;⑤國防科技大學的是研究生.則丙是來自哪個院校的,學位是什么( )
A.國防大學,研究生B.國防大學,博士
C.軍事科學院,學士D.國防科技大學,研究生
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若(2x+1)n=a0+a1x+a2x2+…+anxn的展開式中的各項系數和為243,則a1+2a2+…+nan=( )
A.405B.810C.243D.64
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com