將a2+b2+2ab=(a+b)2改寫成全稱命題是( 。
A、?a,b∈R,a2+b2+2ab=(a+b)2
B、?a<0,b>0,a2+b2+2ab=(a+b)2
C、?a>0,b>0,a2+b2+2ab=(a+b)2
D、?a,b∈R,a2+b2+2ab=(a+b)2
考點:全稱命題
專題:簡易邏輯
分析:根據(jù)全稱命題的定義進行改寫即可.
解答: 解:命題對應的全稱命題為:?a,b∈R,a2+b2+2ab=(a+b)2
故選:D
點評:本題主要考查含有量詞的命題的理解,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
(x-1)(x-2)…(x-n)
(x+1)(x+2)…(x+n)
,求f′(1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)求函數(shù)y=
1
6-x-x2
的定義域;
(2)已知x+x-1=4,求x 
1
2
+x 
1
2
及x-x-1的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知復數(shù)z=log2(a2-4)+(5a-12)i(a∈R),試求實數(shù)a分別取什么值時,z為:
(1)實數(shù);(2)虛數(shù);(3)純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

i
-1+i
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡sin75°cos75°=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和為Sn,且Sn=2an-p,其中p是不為零的常數(shù).
(1)證明:數(shù)列{an}是等比數(shù)列;
(2)當p=2時,數(shù)列{an}滿足b1=2,bn+1=bn+an(n∈N+),求數(shù)列{nbn}的前項n和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一空間幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A、2+2
3
B、4+2
3
C、2+
2
3
3
D、4+
4
3
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,第(1)個多邊形是由正三角形“擴展”而來,第(2)個多邊形是由正四邊形“擴展”而來,…如此類推.設由正n邊形“擴展”而來的多邊形的邊數(shù)為an,

則數(shù)列{
1
an
}的前n項之和等于
 

查看答案和解析>>

同步練習冊答案