分析 (I)設(shè)等比數(shù)列{an}的公比為q>0,由2a5,a4,4a6成等差數(shù)列,可得2a4=2a5+4a6,化為:2q2+q-1=0,q>0,解得q.又滿足a4=4a32,化為:1=4a1q,解得a1.可得an.
(II)bn=$\frac{{a}_{n+1}}{(1-{a}_{n})(1-{a}_{n+1})}$=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$=$\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$,n∈N*,利用“裂項(xiàng)求和”方法即可得出.
解答 解:(I)設(shè)等比數(shù)列{an}的公比為q>0,∵2a5,a4,4a6成等差數(shù)列,∴2a4=2a5+4a6,∴2a4=2a4(q+2q2),
化為:2q2+q-1=0,q>0,解得q=$\frac{1}{2}$.
又滿足a4=4a32,∴${a}_{1}{q}^{3}$=4$({a}_{1}{q}^{2})^{2}$,化為:1=4a1q,解得a1=$\frac{1}{2}$.
∴an=$(\frac{1}{2})^{n}$(n∈N*),.
(II)bn=$\frac{{a}_{n+1}}{(1-{a}_{n})(1-{a}_{n+1})}$=$\frac{{2}^{n}}{({2}^{n}-1)({2}^{n+1}-1)}$=$\frac{1}{{2}^{n}-1}$-$\frac{1}{{2}^{n+1}-1}$,n∈N*,
∴數(shù)列{bn}的前n項(xiàng)和Sn=$(\frac{1}{2-1}-\frac{1}{{2}^{2}-1})$+$(\frac{1}{{2}^{2}-1}-\frac{1}{{2}^{3}-1})$+…+$(\frac{1}{{2}^{n}-1}-\frac{1}{{2}^{n+1}-1})$
=1-$\frac{1}{{2}^{n+1}-1}$=$\frac{{2}^{n+1}-2}{{2}^{n+1}-1}$,n∈N*.
點(diǎn)評(píng) 本題考查了“裂項(xiàng)求和”方法、等差數(shù)列與等比數(shù)列的通項(xiàng)公式與求和公式,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | 3 | C. | 7 | D. | 21 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 12 | C. | 22 | D. | 24 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {k|k≤-1或k≥1} | B. | {k|-1<k<1} | C. | {k|k<-1} | D. | {k|k≤-1} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com