12.我國古代數(shù)學(xué)名著《九章算術(shù)》中的更相減損術(shù)的算法思路與右圖類似.記R(a\b)為a除以b所得的余數(shù)(a,b∈N*),執(zhí)行程序框圖,若輸入a,b分別為266,63,則輸出的b的值為(  )
A.1B.3C.7D.21

分析 模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的a,b,y的值,當(dāng)y=0時滿足條件y=0,退出循環(huán),輸出b的值為7.

解答 解:模擬執(zhí)行程序框圖,可得
a=266,b=63,
y=14,
不滿足條件y=0,a=63,b=14,y=7,
不滿足條件y=0,a=14,b=7,y=0
滿足條件y=0,退出循環(huán),輸出b的值為7.
故選:C.

點評 本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖,正確依次寫出每次循環(huán)得到的a,b,y的值是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知雙曲線$\frac{x^2}{4}-\frac{y^2}{2}=1$右焦點為F,P為雙曲線左支上一點,點$A(0,\sqrt{2})$,則△APF周長的最小值為4(1+$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{an}通項公式${a_n}=\left\{\begin{array}{l}2n-3,\;\;n為奇數(shù)\\{2^{n-1}},\;\;\;\;\;\;n為偶數(shù)\end{array}\right.$,則數(shù)列{an}的前9項和為720.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知$α∈({0\;,\;\;\frac{π}{2}})\;,\;\;sinα=\frac{{\sqrt{5}}}{5}$.
(1)求$sin({α+\frac{π}{4}})$的值;
(2)求tan2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)過點(0,1),且離心率為$\frac{\sqrt{3}}{2}$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)直線l:y=$\frac{1}{2}x$+m與橢圓E交于A、C兩點,以AC為對角線作正方形ABCD,記直線l與x軸的交點為N,問B,N兩點間距離是否為定值?如果是,求出定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.某空間幾何體的三視圖如圖所示,則該幾何體的體積為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.等比數(shù)列{an}的各項均為正數(shù),2a5,a4,4a6成等差數(shù)列,且滿足a4=4a32
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=$\frac{{a}_{n+1}}{(1-{a}_{n})(1-{a}_{n+1})}$,n∈N*,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,四邊形ABCD是平行四邊形,平面AED⊥平面ABCD,EF∥AB,AB=2,BC=EF=1,AE=$\sqrt{6}$,DE=3,∠BAD=60°,G為BC的中點.
(Ⅰ)求證:FG∥平面BED;
(Ⅱ)求證:平面BED⊥平面AED;
(Ⅲ)求直線EF與平面BED所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=ln(1+x),x∈[0,+∞),f'(x)是f(x)的導(dǎo)函數(shù).設(shè)g(x)=f(x)-axf'(x)(a為常數(shù)),求函數(shù)g(x)在[0,+∞)上的最小值.

查看答案和解析>>

同步練習(xí)冊答案