1.若關(guān)于x的不等式x2+2x-k>0的解集為R,則實(shí)數(shù)k的取值范圍是(  )
A.{k|k≤-1或k≥1}B.{k|-1<k<1}C.{k|k<-1}D.{k|k≤-1}

分析 不等式x2+2x-k>0恒成立,則函數(shù)y=x2+2x-k的圖象都在x軸的上方,得到判別式小于0.

解答 解:因?yàn)椴坏仁絰2+2x-k>0恒成立,則函數(shù)y=x2+2x-k的圖象都在x軸的上方,
所以判別式△=4+4k<0,解得k<-1.
故選C.

點(diǎn)評(píng) 本題考查了一元二次不等式恒成立問(wèn)題求參數(shù)范圍;關(guān)鍵是與二次函數(shù)結(jié)合,得到判別式與0的不等式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.等比數(shù)列{an}的各項(xiàng)均為正數(shù),2a5,a4,4a6成等差數(shù)列,且滿足a4=4a32
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{{a}_{n+1}}{(1-{a}_{n})(1-{a}_{n+1})}$,n∈N*,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知tanα=$\sqrt{3,}$α∈(0,π),則sinα=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知函數(shù)f(x)=ln(1+x),x∈[0,+∞),f'(x)是f(x)的導(dǎo)函數(shù).設(shè)g(x)=f(x)-axf'(x)(a為常數(shù)),求函數(shù)g(x)在[0,+∞)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.若a,b∈{1,2,3,…,11},構(gòu)造方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,則該方程表示的曲線為落在矩形區(qū)域{(x,y)||x|<11,|y|<9}內(nèi)的橢圓的概率是$\frac{72}{121}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如果正數(shù)a,b滿足a+b=5,則$\frac{1}{a+1}+\frac{1}{b+2}$的最小值為( 。
A.1B.2C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y≥\frac{x+3}{4}}\\{\frac{3x}{25}+\frac{y}{5}≤1}\\{x-1≥0}\end{array}\right.$,若z=mx-y-3,且z≥0恒成立,則實(shí)數(shù)m的取值不可能為( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若關(guān)于x,y的二元一次方程組$\left\{\begin{array}{l}ax+y=a+1\\ x+ay=2a\end{array}\right.$無(wú)解,則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.三角形ABC中,C=90°,A=30°,過(guò)C作射線l交線段AB于點(diǎn)D,則S△ABC>2S△ACD的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案