9.如圖,在各棱長均相等的三棱柱ABC-A1B1C1中,∠A1AC=60°,D為AC的中點(diǎn).
(1)求證:B1C∥平面A1BD;
(2)求證:平面ABB1A1⊥平面AB1C.

分析 (1)連接AB1和A1B,交于E,連接DE,運(yùn)用中位線定理和線面平行的判定定理,即可得證;
(2)運(yùn)用菱形的對(duì)角線垂直和線面垂直的判斷和性質(zhì),可得A1B⊥平面AB1C,再由面面垂直的判定定理,即可得證.

解答 證明:(1)連接AB1和A1B,交于E,連接DE,
由D,E分別為AC,A1B的中點(diǎn),可得DE∥B1C,
由DE?平面A1BD,B1C?平面A1BD,
即有B1C∥平面A1BD;
(2)由菱形ABB1A1,可得AB1⊥A1B,
∠A1AC=60°,D為AC的中點(diǎn),可得A1D⊥AC,
又BD⊥AC,則AC⊥平面A1BD,
即有AC⊥A1B,又AB1⊥A1B,
則A1B⊥平面AB1C,
而A1B?平面ABB1A1,則平面ABB1A1⊥平面AB1C.

點(diǎn)評(píng) 本題考查線面平行和面面垂直的判定,注意運(yùn)用線面平行和面面垂直的判定定理,考查空間線面位置關(guān)系的轉(zhuǎn)化,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中滿足在(-∞,0)是單調(diào)遞增的是( 。
A.f(x)=$\frac{1}{x+2}$B.f(x)=-(x+1)2C.f(x)=1+2x2D.f(x)=-|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=blnx-$\frac{1}{x}$,g(x)=-ax2+b,函數(shù)F(x)=$\frac{a+b}f(x)-g(x)+\frac{a+b}{x}$(a,b∈R,且b≠0),曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x+2y=0垂直.
(1)求b的值;
(2)討論函數(shù)F(x)的單調(diào)性;
(3)設(shè)a≤-2,證明:對(duì)任意x1,x2∈(0,+∞),|F(x1)-F(x2)|≥4|x1-x2|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列說法中正確的個(gè)數(shù)有( 。
①兩平面平行,夾在兩平面間的平行線段相等;
②兩平面平行,夾在兩平面間的相等的線段平行;
③兩條直線被三個(gè)平行平面所截,截得的線段對(duì)應(yīng)成比例;
④如果夾在兩平面間的三條平行線段相等,那么這兩個(gè)平面平行.
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知△ABC的外接圓半徑為1,圓心為O,且3$\overrightarrow{OA}+4\overrightarrow{OB}+5\overrightarrow{OC}=\overrightarrow{0}$,則△ABC的面積為( 。
A.$\frac{8}{5}$B.$\frac{7}{5}$C.$\frac{6}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.函數(shù)f(x)=loga(4x-x2-3)(0<a<1)的單調(diào)增區(qū)間是(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.命題“設(shè) a、b、c∈R,若ac2>bc2 則 a>b”的原命題、逆命題、否命題中,真命題的個(gè)數(shù)是(  )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)命題p:實(shí)數(shù)x滿足x2-4ax+3a2<0,命題q:實(shí)數(shù)x滿足log2x≤2.
(1)若a=1,且p∧q為真,求實(shí)數(shù)x的取值范圍;
(2)若a>0且?q是?p的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.計(jì)算:
(1)${(\sqrt{2}-1)^0}+{(\frac{16}{9})^{-\frac{1}{2}}}+{(\sqrt{8})^{-\frac{4}{3}}}$;
(2)${2^{{{log}_2}}}^{\frac{1}{4}}-{({\frac{8}{27}})^{-\frac{2}{3}}}+lg\frac{1}{100}+{(\sqrt{2}-1)^{lg1}}+2lg(\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}})$.

查看答案和解析>>

同步練習(xí)冊(cè)答案