9.已知奇函數(shù)f(x)在區(qū)間[-1,1]上是增函數(shù),且f(1)=1,若函數(shù)f(x)≥t2-4at-1對所有的x∈[-1,1]都存在a∈[-1,1]使不等式成立,則實數(shù)t的取值范圍是{0}}.

分析 由f(1)=1得f(-1)=-1,f(x)≤t2-2at+1對所有的x∈[-1,1]都成立,只需要f(x)的最小值大于或等于t2-4at+1即可.再利用二次函數(shù)的性質(zhì)求得t的范圍.

解答 解:∵函數(shù)f(x)是奇函數(shù),且在[-1,1]是單調(diào)增函數(shù),又f(1)=1,∴f(-1)=-1,
∴當(dāng)x∈[-1,1]時,f(x)∈[-1,1].
若函數(shù)f(x)≥t2-4at-1對所有的x∈[-1,1]都成立,由已知易得f(x)的最小值是-1,
∴-1≥t2-4at-1,等價于t2-4at≤0.
設(shè)g(a)=t2-4at(-1≤a≤1),
欲使 t2-4at≤0恒成立,則 $\left\{\begin{array}{l}{g(-1){=t}^{2}+4t≤0}\\{g(1){=t}^{2}-4t≤0}\end{array}\right.$,求得t=0,
故答案為:{0}.

點評 本題考查的知識點是奇偶性與單調(diào)性的綜合,其中根據(jù)已知結(jié)合函數(shù)的奇偶性與單調(diào)性判斷出當(dāng)x∈[-1,1]時,函數(shù)f(x)值域,是解答本題的關(guān)鍵,考查了函數(shù)的恒成立問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.經(jīng)過兩點A(2,3),B(-1,x)的直線l1與經(jīng)過點P(2,0)且斜率為1的直線l2平行,則x的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x|x-1|
(1)畫出該函數(shù)的圖象;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)設(shè)0<a<1,求f(x)在[0,a]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.2016°角所在的象限是( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=$\frac{x}{(1-x)^{2}}$的單調(diào)遞增區(qū)間是( 。
A.(-∞,1)B.(1,+∞)C.(-1,1)D.(-∞,1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如果數(shù)列{an}、{bn}是項數(shù)相同的兩個等差數(shù)列,p,q是常數(shù),那么數(shù)列{pan+qbn}是等差數(shù)列嗎?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知單位向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}$⊥$\overrightarrow$,且正實數(shù)λ,μ滿足($\overrightarrow{a}$+$\overrightarrow$-$λ\overrightarrow{a}$)•($\overrightarrow{a}$+$\overrightarrow$-$μ\overrightarrow$)=0,則|$λ\overrightarrow{a}$-$μ\overrightarrow$|的取值范圍是[$\sqrt{2}$,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如果兩條直線l1,l2中的一條斜率不存在,另一個斜率是零,那么l1與l2的位置關(guān)系是垂直.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某初中對初二年級的學(xué)生進(jìn)行體質(zhì)測試,已知初二一班共有學(xué)生30人,測試立定跳遠(yuǎn)的成績用莖葉圖表示如下(單位:cm):
男生成績在175cm以上(包括175cm)定義為“合格”,成績在175cm以下(不包括175cm)定義為“不合格”;
女生成績在165cm以上(包括165cm)定義為“合格”,成績在165cm以下(不包括165cm)定義為“不合格”.
(1)求女生立定跳遠(yuǎn)成績的中位數(shù);
(2)若在男生中用分層抽樣的方法抽取6個人,求抽取成績“合格”的學(xué)生人數(shù);
(3)若從全班成績“合格”的學(xué)生中選取2個人參加復(fù)試,用X表示其中男生的人數(shù),試寫出X的分布列,并求X的數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案