14.如果數(shù)列{an}、{bn}是項數(shù)相同的兩個等差數(shù)列,p,q是常數(shù),那么數(shù)列{pan+qbn}是等差數(shù)列嗎?為什么?

分析 可判斷數(shù)列{pan+qbn}是等差數(shù)列,利用定義證明即可.

解答 解:數(shù)列{pan+qbn}是等差數(shù)列,證明如下,
設(shè)等差數(shù)列{an}、{bn}的公差分別為d,e;
則(pan+1+qbn+1)-(pan+qbn
=p(an+1-an)+q(bn+1-bn)=pd+qe為常數(shù),
故數(shù)列{pan+qbn}是等差數(shù)列.

點(diǎn)評 本題考查了等差數(shù)列的性質(zhì)及判斷,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)的定義域?yàn)椋?,+∞),對于定義域內(nèi)任意x,y,均有f(xy)=f(x)+f(y),且函數(shù)在定義域內(nèi)為單調(diào)遞減函數(shù).
(Ⅰ)求$f(1),f(a)+f({\frac{1}{a}})$的值;
(Ⅱ)求函數(shù)f(x)的零點(diǎn);
(Ⅲ)求滿足不等式f(2m+1)+f(m)>0的實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow$=(cosx,sinx),x∈R,函數(shù)f(x)=$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow$).
(1)求函數(shù)f(x)的最小正周期;
(3)當(dāng)x∈[$-\frac{π}{4}$,$\frac{π}{4}}$]時,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.兩個箱子中放有同一產(chǎn)品,第一箱中有4件次品和6件正品,第二箱中$\frac{1}{4}$為次品,其余為正品,現(xiàn)從第一箱中任取兩件產(chǎn)品,而且已知其中有一件是次品,再從第二箱中任取一件產(chǎn)品,若從這三件產(chǎn)品中任取一件,求取得產(chǎn)品是次品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知奇函數(shù)f(x)在區(qū)間[-1,1]上是增函數(shù),且f(1)=1,若函數(shù)f(x)≥t2-4at-1對所有的x∈[-1,1]都存在a∈[-1,1]使不等式成立,則實(shí)數(shù)t的取值范圍是{0}}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知圓C的圓心是直線x-y+1=0與x軸的交點(diǎn),且圓C與直線x+y+3=0相切.
(I)求圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過原點(diǎn)O的動直線l與圓C交于A、B兩點(diǎn),問x軸上是否存在定點(diǎn)M(x0,0),使得當(dāng)l變動時,總有MA,MB的斜率之和為0?若存在,求出x0的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在$\frac{8}{3}$和$\frac{27}{2}$之間插入3個數(shù),使這五個數(shù)成等比數(shù)列,求這三數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知集合A={x|x2-5x+6<0},B={x|x2-ax+5=0},若A∩B≠∅,則實(shí)數(shù)a的取值范圍為[2$\sqrt{5}$,$\frac{14}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某學(xué)校對參加“社會實(shí)踐活動”的全體志愿者進(jìn)行學(xué)分考核,因該批志愿者表現(xiàn)良好,學(xué)校決定考核只有合格和優(yōu)秀兩個等次,若某志愿者考核我合格,授予1個學(xué)分;考核為優(yōu)秀,授予2個學(xué)分,假設(shè)該校志愿者甲、乙、丙考核為優(yōu)秀的概率分別為$\frac{4}{5},\frac{2}{3},\frac{2}{3}$,他們考核所得的等次相互獨(dú)立.
(1)求在這次考核中,志愿者甲、乙、丙三人中至少有一名考核為優(yōu)秀的概率;
(2)記在這次考核中甲、乙、丙三名志愿者所得學(xué)分之和為隨機(jī)變量X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案