A. | (0,0) | B. | $(\frac{π}{5},0)$ | C. | (π,0) | D. | $(\frac{3π}{10},0)$ |
分析 根據(jù)正切函數(shù)的圖象與性質(zhì),令x+$\frac{π}{5}$=$\frac{kπ}{2}$(k∈Z),即可求出函數(shù)y的一個對稱中心點.
解答 解:函數(shù)$y=tan(x+\frac{π}{5})$(x∈R且$x≠kπ+\frac{3π}{10}$,k∈Z),
令x+$\frac{π}{5}$=$\frac{kπ}{2}$,k∈Z,
解得x=$\frac{kπ}{2}$-$\frac{π}{5}$,k∈Z,
當(dāng)k=0時,x=-$\frac{π}{5}$,
當(dāng)k=1時,x=$\frac{3π}{10}$;
所以函數(shù)y的一個對稱中心的點是($\frac{3π}{10}$,0).
故選:D.
點評 本題考查了正切函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 最大值為1,圖象關(guān)于直線$x=\frac{π}{2}$對稱 | B. | 周期為π,圖象關(guān)于點($\frac{3π}{8}$,0)對稱 | ||
C. | 在(-$\frac{3π}{8}$,$\frac{π}{8}$)上單調(diào)遞增,為偶函數(shù) | D. | 在$({0,\frac{π}{4}})$上單調(diào)遞增,為奇函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 充要條件 | D. | 既非充分也非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | $-\frac{1}{2}$ | C. | $-\frac{1}{3}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 91種 | B. | 90種 | C. | 89種 | D. | 86種 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 36 | B. | 48 | C. | 38 | D. | 40 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com