A. | $[{\frac{{\sqrt{29}}}{5},\frac{{\sqrt{5}}}{2}}]$ | B. | $[{\frac{{\sqrt{29}}}{5},\frac{{\sqrt{13}}}{3}}]$ | C. | $[{\frac{{3\sqrt{2}}}{4},\frac{{\sqrt{13}}}{3}}]$ | D. | $[{\frac{{3\sqrt{2}}}{4},\frac{{\sqrt{5}}}{2}}]$ |
分析 取棱B1C1的中點(diǎn)N,在BB1上取點(diǎn)M,使B1M=2BM,連接MN,易證平面A1MN∥平面AEF,由題意知點(diǎn)P必在線段MN上,由此可判斷P在M處時(shí)A1P最長,A1P⊥MN時(shí)最短,通過解直角三角形即可求得.
解答 解:如下圖所示:
取棱B1C1的中點(diǎn)N,在BB1上取點(diǎn)M,使B1M=2BM,連接MN,連接BC1,
∵N、E為所在棱的中點(diǎn),B1M=2BM,CF=2FC1
∴四邊形MNFE為平行四邊形,∴MN∥EF
∴A1N∥AE,又A1N∩MN=N,∴平面A1MN∥平面AEF,
∵P是側(cè)面BCC1B1內(nèi)一點(diǎn),且A1P∥平面AEF,
則P必在線段MN上,AM=$\frac{\sqrt{13}}{3}$,AN=$\frac{\sqrt{5}}{2}$,MN=$\frac{5}{6}$'
在△A1MN中,由余弦定理求得cos∠MA1N=$\frac{6}{\sqrt{65}}$,⇒sin∠MA1N=$\frac{\sqrt{29}}{\sqrt{65}}$.
由面積相等得MN•h=A1M•A1Nsin∠MA1N⇒h=$\frac{\sqrt{29}}{5}$,
則線段A1P長度的取值范圍是[$\frac{\sqrt{29}}{5},\frac{\sqrt{13}}{3}$]
故選:B
點(diǎn)評 本題考查點(diǎn)、線、面間的距離問題,考查學(xué)生的運(yùn)算能力及推理轉(zhuǎn)化能力,屬中檔題,解決本題的關(guān)鍵是通過構(gòu)造平行平面尋找P點(diǎn)位置.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 200 | B. | 199 | C. | 299 | D. | 399 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 沒有 | B. | 僅有② | C. | ②④ | D. | ②③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ②、④都可能為分層抽樣 | B. | ①、③都不能為分層抽樣 | ||
C. | ①、④都可能為系統(tǒng)抽樣 | D. | ②、③都不能為系統(tǒng)抽樣 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com