已知圓O:x2+y2=4,動點P(t,0)(-2≤t≤2),曲線C:y=3|x-t|.曲線C與圓O相交于兩個不同的點M,N
(1)若t=1,求線段MN的中點P的坐標(biāo);
(2)求證:線段MN的長度為定值;
(3)若,m,n,s,p均為正整數(shù).試問:曲線C上是否存在兩點A(m,n),B(s,p)(11),使得圓O上任意一點到點A的距離與到點B的距離之比為定值k(k>1)?若存在請求出所有的點A,B;若不存在請說明理由.
【答案】分析:(1)將曲線C的方程代入圓的方程,消去y得到關(guān)于x的一元二次方程,再結(jié)合根系數(shù)的關(guān)系利用中點坐標(biāo)公式即可求得P的坐標(biāo);
(2)利用將曲線C的方程代入圓的方程,消去y得到的方程,結(jié)合根與系數(shù)的關(guān)系,利用兩點間的距離公式即可求出線段MN的長度為定值;
(3)對于存在性問題,可先假設(shè)存在,即假設(shè)存在兩點A(m,n),B(s,p)(11),使得圓O上任意一點到點A的距離與到點B的距離之比為定值,再建立等式求出A,B的坐標(biāo),若出現(xiàn)矛盾,則說明假設(shè)不成立,即不存在;否則存在.
解答:解:(1)設(shè)M(x1,y1),N(x2,y2)(x1<1<x2),P(x,y
,
所以=
所以---------------------------(6分)
(2),
,
,
=
,為定值.---------------------------------(4分)
(3)設(shè),

消去m,n得
所以s=p=1,,此時m=n=2,又A(2,2),B(1,1)在曲線C上
所以僅有A(2,2),B(1,1)符合.----------------------------------------(6分)
點評:本小題主要考查中點坐標(biāo)公式、兩點間的距離公式極值、導(dǎo)數(shù)、直線與圓的位置關(guān)系等基本知識,考查方程思想、化歸以及數(shù)形結(jié)合等數(shù)學(xué)思想方法,考查分析問題、解決問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知圓O:x2+y2=2交x軸于A,B兩點,曲線C是以AB為長軸,離心率為
2
2
的橢圓,其左焦點為F.若P是圓O上一點,連接PF,過原點O作直線PF的垂線交橢圓C的左準(zhǔn)線于點Q.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若點P的坐標(biāo)為(1,1),求證:直線PQ與圓O相切;
(3)試探究:當(dāng)點P在圓O上運(yùn)動時(不與A、B重合),直線PQ與圓O是否保持相切的位置關(guān)系?若是,請證明;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知圓o:x2+y2=b2與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
有一個公共點A(0,1),F(xiàn)為橢圓的左焦點,直線AF被圓所截得的弦長為1.
(1)求橢圓方程.
(2)圓o與x軸的兩個交點為C、D,B( x0,y0)是橢圓上異于點A的一個動點,在線段CD上是否存在點T(t,0),使|BT|=|AT|,若存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=9,定點 A(6,0),直線l:3x-4y-25=0
(1)若P為圓O上動點,求線段PA的中點M的軌跡方程
(2)設(shè)E、F分別是圓O和直線l上任意一點,求線段EF的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣州一模)已知圓O:x2+y2=r2,點P(a,b)(ab≠0)是圓O內(nèi)一點,過點P的圓O的最短弦所在的直線為l1,直線l2的方程為ax+by+r2=0,那么(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=1,點P在直線x=
3
上,O為坐標(biāo)原點,若圓O上存在點Q,使∠OPQ=30°,則點P的縱坐標(biāo)y0的取值范圍是( 。

查看答案和解析>>

同步練習(xí)冊答案