精英家教網 > 高中數學 > 題目詳情

【題目】微信作為一款社交軟件已經在支付、理財、交通、運動等各方面給人們的生活帶來各種各樣的便利.手機微信中的“微信運動”,不僅可以看自己每天的運動步數,還可以看到朋友圈里好友的步數.先生朋友圈里有大量好友使用了“微信運動”這項功能,他隨機選取了其中40名,記錄了他們某一天的走路步數,統(tǒng)計數據如下表所示:

步數

性別

3

4

5

4

3

1

3

5

3

2

5

2

1)以樣本估計總體,視樣本頻率為概率,在先生的微信朋友圈里的男性好友中任意選取3名,其中走路步數不低于6000步的有名,求的分布列和數學期望;

2)如果某人一天的走路步數不低于8000步,此人將被“微信運動”評定為“運動達人”,否則為“運動懶人”.根據題意完成下面的2×2列聯表,并據此判斷能否有90%以上的把握認為“評定類型”與“性別”有關?

運動達人

運動懶人

總計

總計

附:,其中

0.10

0.05

0.025

0.01

0.005

2.706

3.841

5.024

6.635

7.879

【答案】1)分布列見解析,;(2)沒有.

【解析】

(1)利用二項分布可求的分布列和數學期望.

(2)根據題設中的數據可得列聯表,再由公式可計算得到的觀察值,最后根據臨界值表可得沒有90%以上的把握認為“評定類型”與“性別”有關.

(1)在先生的男性好友中任意選取1名,其中走路步數不低于6000的概率為可能取值分別為0,1,2,3,

,,

,,

的分布列為

0

1

2

3

,

(也可寫成),∴.

(2)完成2×2列聯表

運動達人

運動懶人

總計

4

16

20

7

13

20

總計

11

29

40

的觀測值,

∴據此判斷沒有90%以上的把握認為“評定類型”與“性別”有關.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ln (x+1)-xa∈R.

(1)當a>0時,求函數f(x)的單調區(qū)間;

(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,底面為正方形的四棱錐中,平面為棱上一動點,.

1)當中點時,求證:平面;

2)當平面時,求的值;

3)在(2)的條件下,求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓 經過橢圓 的左右焦點,且與橢圓在第一象限的交點為,且三點共線,直線交橢圓 兩點,且).

(1)求橢圓的方程;

(2)當三角形的面積取得最大值時,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在底面為正方形的四棱錐P-ABCD,側棱PD⊥底面ABCDPD=DC,點E線段PC的中點

(1)求異面直線APBE所成角的大小;

(2)若點F在線段PB上,使得二面角F-DE-B的正弦值,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓中心在原點,焦點在坐標軸上,直線與橢圓在第一象限內的交點是,點軸上的射影恰好是橢圓的右焦點,橢圓另一個焦點是,且.

(1)求橢圓的方程;

(2)直線過點,且與橢圓交于兩點,求的內切圓面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數的定義城為D,若滿足條件:存在,使上的值城為),則稱k倍函數,給出下列結論:①“1倍函數;②“2倍函數:③“3倍函數.其中正確的是(

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某山地車訓練中心有一直角梯形森林區(qū)域,其四條邊均為道路,其中,千米,千米,千米.現有甲、乙兩名特訓隊員進行野外對抗訓練,要求同時從地出發(fā)勻速前往地,其中甲的行駛路線是,速度為千米/小時,乙的行駛路線是,速度為千米/小時.

1)若甲、乙兩名特訓隊員到達地的時間相差不超過分鐘,求乙的速度的取值范圍;

2)已知甲、乙兩名特訓隊員攜帶的無線通訊設備有效聯系的最大距離是千米.若乙先于甲到達地,且乙從地到地的整個過程中始終能用通訊設備對甲保持有效聯系,求乙的速度的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費(單位:萬元)對年銷售量(單位:噸)和年利潤(單位:萬元)的影響.對近六年的年宣傳費和年銷售量)的數據作了初步統(tǒng)計,得到如下數據:

年份

年宣傳費(萬元)

年銷售量(噸)

經電腦模擬,發(fā)現年宣傳費(萬元)與年銷售量(噸)之間近似滿足關系式).對上述數據作了初步處理,得到相關的值如表:

1)根據所給數據,求關于的回歸方程;

2)已知這種產品的年利潤,的關系為若想在年達到年利潤最大,請預測年的宣傳費用是多少萬元?

附:對于一組數據,…,,其回歸直線中的斜率和截距的最小二乘估計分別為,

查看答案和解析>>

同步練習冊答案