【題目】微信作為一款社交軟件已經在支付、理財、交通、運動等各方面給人們的生活帶來各種各樣的便利.手機微信中的“微信運動”,不僅可以看自己每天的運動步數,還可以看到朋友圈里好友的步數.先生朋友圈里有大量好友使用了“微信運動”這項功能,他隨機選取了其中40名,記錄了他們某一天的走路步數,統(tǒng)計數據如下表所示:
步數 性別 | ||||||
男 | 3 | 4 | 5 | 4 | 3 | 1 |
女 | 3 | 5 | 3 | 2 | 5 | 2 |
(1)以樣本估計總體,視樣本頻率為概率,在先生的微信朋友圈里的男性好友中任意選取3名,其中走路步數不低于6000步的有名,求的分布列和數學期望;
(2)如果某人一天的走路步數不低于8000步,此人將被“微信運動”評定為“運動達人”,否則為“運動懶人”.根據題意完成下面的2×2列聯表,并據此判斷能否有90%以上的把握認為“評定類型”與“性別”有關?
運動達人 | 運動懶人 | 總計 | |
男 | |||
女 | |||
總計 |
附:,其中
0.10 | 0.05 | 0.025 | 0.01 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ln (x+1)- -x,a∈R.
(1)當a>0時,求函數f(x)的單調區(qū)間;
(2)若存在x>0,使f(x)+x+1<- (a∈Z)成立,求a的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,底面為正方形的四棱錐中,平面,為棱上一動點,.
(1)當為中點時,求證:平面;
(2)當平面時,求的值;
(3)在(2)的條件下,求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓: 經過橢圓: 的左右焦點,且與橢圓在第一象限的交點為,且三點共線,直線交橢圓于, 兩點,且().
(1)求橢圓的方程;
(2)當三角形的面積取得最大值時,求直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在底面為正方形的四棱錐P-ABCD中,側棱PD⊥底面ABCD,PD=DC,點E是線段PC的中點.
(1)求異面直線AP與BE所成角的大小;
(2)若點F在線段PB上,使得二面角F-DE-B的正弦值為,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓中心在原點,焦點在坐標軸上,直線與橢圓在第一象限內的交點是,點在軸上的射影恰好是橢圓的右焦點,橢圓另一個焦點是,且.
(1)求橢圓的方程;
(2)直線過點,且與橢圓交于兩點,求的內切圓面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數的定義城為D,若滿足條件:存在,使在上的值城為(且),則稱為“k倍函數”,給出下列結論:①是“1倍函數”;②是“2倍函數”:③是“3倍函數”.其中正確的是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某山地車訓練中心有一直角梯形森林區(qū)域,其四條邊均為道路,其中,,千米,千米,千米.現有甲、乙兩名特訓隊員進行野外對抗訓練,要求同時從地出發(fā)勻速前往地,其中甲的行駛路線是,速度為千米/小時,乙的行駛路線是,速度為千米/小時.
(1)若甲、乙兩名特訓隊員到達地的時間相差不超過分鐘,求乙的速度的取值范圍;
(2)已知甲、乙兩名特訓隊員攜帶的無線通訊設備有效聯系的最大距離是千米.若乙先于甲到達地,且乙從地到地的整個過程中始終能用通訊設備對甲保持有效聯系,求乙的速度的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為確定下一年度投入某種產品的宣傳費,需了解年宣傳費(單位:萬元)對年銷售量(單位:噸)和年利潤(單位:萬元)的影響.對近六年的年宣傳費和年銷售量()的數據作了初步統(tǒng)計,得到如下數據:
年份 | ||||||
年宣傳費(萬元) | ||||||
年銷售量(噸) |
經電腦模擬,發(fā)現年宣傳費(萬元)與年銷售量(噸)之間近似滿足關系式().對上述數據作了初步處理,得到相關的值如表:
(1)根據所給數據,求關于的回歸方程;
(2)已知這種產品的年利潤與,的關系為若想在年達到年利潤最大,請預測年的宣傳費用是多少萬元?
附:對于一組數據,,…,,其回歸直線中的斜率和截距的最小二乘估計分別為,
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com