15.如圖,在平面直角坐標(biāo)系xoy中,拋物線C的頂點(diǎn)在原點(diǎn),經(jīng)過點(diǎn)A(2,4),其焦點(diǎn)F在x軸上.
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)求過點(diǎn)F,且與直線OA垂直的直線的方程.

分析 (1)根據(jù)題意先設(shè)出拋物線的標(biāo)準(zhǔn)方程,把點(diǎn)A代入即可求得p,則拋物線的方程可得.
(2)根據(jù)(1)中拋物線的方程求得焦點(diǎn)的坐標(biāo),根據(jù)直線OA的斜率可求得直線OA垂直的直線的斜率,最后利用點(diǎn)斜式求得直線的方程.

解答 解:(1)由題意,可設(shè)拋物線C的標(biāo)準(zhǔn)方程為y2=2px.
因?yàn)辄c(diǎn)A(2,2)在拋物線C上,所以p=4.
因此,拋物線C的標(biāo)準(zhǔn)方程為y2=8x.
(2)由(1)可得焦點(diǎn)F的坐標(biāo)是(2,0),
又直線OA的斜率為$\frac{4-0}{2-0}=2$,
故與直線OA垂直的直線的斜率為$-\frac{1}{2}$,
因此,所求直線的方程是x+2y-2=0.

點(diǎn)評(píng) 本題主要考查了拋物線的標(biāo)準(zhǔn)方程,直線的一般方程.考查了拋物線的基礎(chǔ)知識(shí)的理解和靈活利用.在求得拋物線的標(biāo)準(zhǔn)方程時(shí)要特別注意拋物線的開口方向.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.為確保信息安全,信息需加密傳輸,發(fā)送方由明文→密文(加密),接收方由密文→明文(解密),已知加密規(guī)則如圖所示,例如,明文1,2,3,4對(duì)應(yīng)密文5,7,18,16.當(dāng)接收方收到密文14,9,23,28時(shí),則解密得到的明文為( 。
A.4,6,1,7B.7,6,1,4C.6,4,1,7D.1,6,4,7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.學(xué)校擬進(jìn)行一次活動(dòng),對(duì)此,新聞媒體進(jìn)行了網(wǎng)上調(diào)查,所有參與調(diào)查的人中,持“支持”“保留”和“不支持”態(tài)度的人數(shù)如表所示
支持保留不支持
20歲以下800450200
20歲以上(含20歲)100150300
(Ⅰ)在所有參與調(diào)查的人中,用分層抽樣的方法抽取n個(gè)人,已知從持“不支持”態(tài)度的人中抽取了25人,求n的值;
(Ⅱ)在持“不支持”態(tài)度的人中,用分層抽樣的方法抽取5人看成一個(gè)總體,從這5人中任意選取2人,求至少有1人年齡在20歲以上的概率;
(Ⅲ)在接受調(diào)查的人中,有8人給這項(xiàng)活動(dòng)打出的分?jǐn)?shù)如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把這8個(gè)人打出的分?jǐn)?shù)看作一個(gè)總體,從中任取1個(gè)數(shù),求該數(shù)與總體平均數(shù)之差的絕對(duì)值超過0.6的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若純虛數(shù)Z滿足(1-i)z=1+ai,則實(shí)數(shù)a等于1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.投擲一枚均勻硬幣和一枚均勻骰子各一次,記“硬幣反面向上”為事件A,“骰子向上的點(diǎn)數(shù)是6”為事件B,則事件A,B中至少有一件發(fā)生的概率是(  )
A.$\frac{5}{12}$B.$\frac{1}{2}$C.$\frac{7}{12}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列命題是真命題的是( 。
A.有兩個(gè)面相互平行,其余各面都是平行四邊形的多面體是棱柱
B.正四面體是四棱錐
C.有一個(gè)面是多邊形,其余各面都是三角形的多面體叫做棱錐
D.正四棱柱是平行六面體

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,四棱錐P-ABCD中,四邊形ABCD為矩形,PD⊥平面ABCD,E,F(xiàn)分別為PC和BD的中點(diǎn).

(Ⅰ)求證:EF∥平面PAD;
(Ⅱ)求證:CD⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知復(fù)數(shù)z=m(m-1)+(m2+2m-3)i,
(1)當(dāng)實(shí)數(shù)m取什么值時(shí),復(fù)數(shù)z是:
①零;
②純虛數(shù);
③z=2+5i.
(2)若在復(fù)平面C內(nèi),z所對(duì)應(yīng)的點(diǎn)在第四象限,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知矩陣P=$({\begin{array}{l}m&1\\{3m}&{-m}\end{array}})$,Q=$({\begin{array}{l}x\\ y\end{array}})$,M=$({\begin{array}{l}{-2}\\ m\end{array}})$,N=$({\begin{array}{l}1\\{m+3}\end{array}})$,若PQ=M+N.
(1)寫出PQ=M+N所表示的關(guān)于x、y的二元一次方程組;
(2)用行列式解上述二元一次方程組.

查看答案和解析>>

同步練習(xí)冊(cè)答案