8.下列四個不等式中,錯誤的個數(shù)是( 。
①50.5<60.5②0.10.3<0.10.4③log23<log25④log32<0.1-0.2
A.0B.1C.2D.3

分析 利用指數(shù)函數(shù)、對數(shù)函數(shù)與冪函數(shù)的單調(diào)性即可判斷出正誤.

解答 解:①50.5<60.5,正確;
②0.10.3<0.10.4,不正確;
③log23<log25,正確;
④log32<1<0.1-0.2.因此正確.
只有②不正確.
故選:B.

點(diǎn)評 本題考查了指數(shù)函數(shù)、對數(shù)函數(shù)與冪函數(shù)的單調(diào)性,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知點(diǎn)(x,y)滿足不等式組$\left\{\begin{array}{l}x-y+3≥0\\ 2x-y-1≤0\\ 3x+2y-6≥0\end{array}\right.$,則$z=\frac{y}{x+1}$的最小值為(  )
A.3B.$\frac{7}{4}$C.$\frac{3}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x-alnx-$\frac{x}-2({a,b∈{R}})$.
(Ⅰ)當(dāng)a-b=1,a>1時,討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)當(dāng)b=-1,a≤4時,不等式f(x)<-$\frac{3}{x}$在區(qū)間[2,4]上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在空間直角坐標(biāo)系中,平面α內(nèi)有M(m,-2,1)和N(0,m,3)兩點(diǎn),平面α的一個法向量為$\overrightarrow{n}$=(3,1,2),則m等于( 。
A.-2B.2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-1,3),則$\overrightarrow a•\overrightarrow b$=( 。
A.2B.1C.0D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直線x-y+3=0被圓x2+y2+4x-4y+6=0截得的弦長等于( 。
A.2$\sqrt{3}$B.$\sqrt{6}$C.$\sqrt{3}$D.$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)$α∈(\frac{π}{2},π)$,且$sinα(sinα+cosα)=\frac{21}{25}$,則tanα的值為-7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知p:方程x2+2x+m=0無實數(shù)根,q:方程$\frac{{x}^{2}}{m-1}$+y2=1是焦點(diǎn)在x軸上的橢圓,若“非p”與“p且q”同時為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知P為橢圓$\frac{{x}^{2}}{4}$+y2=1上任意一點(diǎn),F(xiàn)1,F(xiàn)2為其左、右焦點(diǎn),則$\frac{1}{|P{F}_{1}|}$+$\frac{1}{|P{F}_{2}|}$的最小值等于1.

查看答案和解析>>

同步練習(xí)冊答案