【題目】如圖,在底面為正方形的四棱錐中,平面,點分別在棱,上,且滿足,.

(1)證明:平面;

(2)若,求二面角的余弦值.

【答案】(1)見解析; (2).

【解析】

1)在棱上取一點,使得,連接,,可證明是平行四邊形,可得,由線面平行的判定定理可得結果;(2)以為坐標原點以軸建立空間直角坐標系,設,利用向量垂直數(shù)量積為零列方程求出平面的法向量,結合平面的一個法向量為,利用空間向量夾角余弦公式求解即可.

(1)在棱上取一點,使得,連接,

因為,,所以,

所以.又因為,,所以,,

所以是平行四邊形,所以,

因為平面,平面,所以平面.

(2)依題意,以為坐標原點,以軸建立空間直角坐標系,

,則,,,

所以.

設平面的法向量為,則,即,取,

.

平面,所以平面的一個法向量為,

所以,

又二面角為銳角,所以二面角的余弦值為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】若正四面體PQMN的頂點分別在給定的四面體ABCD的面上,每個面上恰有一個點,那么,( ).

A. 當四面體ABCD是正四面體時,正四面體PQMN有無數(shù)個,否則,正四面體PQMN只有一個

B. 當四面體ABCD是正四面體時,正四面體PQMN有無數(shù)個,否則,正四面體PQMN不存在

C. 當四面體ABCD的三組對棱分別相等時,正四面體PQMN有無數(shù)個,否則,正四面體PQMN只有一個

D. 對任何四面體ABCD,正四面體PQMN都有無數(shù)個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某次投籃測試中,有兩種投籃方案:方案甲:先在A點投籃一次,以后都在B點投籃;方案乙:始終在B點投籃.每次投籃之間相互獨立.某選手在A點命中的概率為,命中一次記3分,沒有命中得0分;在B點命中的概率為,命中一次記2分,沒有命中得0分,用隨機變量表示該選手一次投籃測試的累計得分,如果的值不低于3分,則認為其通過測試并停止投籃,否則繼續(xù)投籃,但一次測試最多投籃3.

(1)若該選手選擇方案甲,求測試結束后所得分的分布列和數(shù)學期望.

(2)試問該選手選擇哪種方案通過測試的可能性較大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如今我們的互聯(lián)網(wǎng)生活日益豐富,除了可以很方便地網(wǎng)購,網(wǎng)絡外賣也開始成為不少人日常生活中不可或缺的一部分.某市一調(diào)查機構針對該市市場占有率最高的甲、乙兩家網(wǎng)絡外賣企業(yè)(以下簡稱外賣甲,外賣乙)的經(jīng)營情況進行了調(diào)查,調(diào)查結果如表:

1日

2日

3日

4日

5日

外賣甲日接單(百單)

5

2

9

8

11

外賣乙日接單(百單)

2.2

2.3

10

5

15

(1)據(jù)統(tǒng)計表明,之間具有線性相關關系.

(。┱堄孟嚓P系數(shù)加以說明:(若,則可認為有較強的線性相關關系(值精確到0.001))

(ⅱ)經(jīng)計算求得之間的回歸方程為.假定每單外賣業(yè)務企業(yè)平均能獲純利潤3元,試預測當外賣乙日接單量不低于2500單時,外賣甲所獲取的日純利潤的大致范圍:(值精確到0.01)

(2)試根據(jù)表格中這五天的日接單量情況,從平均值和方差角度說明這兩家外賣企業(yè)的經(jīng)營狀況.

相關公式:相關系數(shù),

參考數(shù)據(jù):

.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】近年來,我國工業(yè)經(jīng)濟發(fā)展迅速,工業(yè)增加值連年攀升,某研究機構統(tǒng)計了近十年(從2008年到2017年)的工業(yè)增加值(萬億元),如下表:

年份

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

年份序號

1

2

3

4

5

6

7

8

9

10

工業(yè)增加值

13.2

13.8

16.5

19.5

20.9

22.2

23.4

23.7

24.8

28

依據(jù)表格數(shù)據(jù),得到下面的散點圖及一些統(tǒng)計量的值.

5.5

20.6

82.5

211.52

129.6

(1)根據(jù)散點圖和表中數(shù)據(jù),此研究機構對工業(yè)增加值(萬億元)與年份序號的回歸方程類型進行了擬合實驗,研究人員甲采用函數(shù),其擬合指數(shù);研究人員乙采用函數(shù),其擬合指數(shù);研究人員丙采用線性函數(shù),請計算其擬合指數(shù),并用數(shù)據(jù)說明哪位研究人員的函數(shù)類型擬合效果最好.(注:相關系數(shù)與擬合指數(shù)滿足關系).

(2)根據(jù)(1)的判斷結果及統(tǒng)計值,建立關于的回歸方程(系數(shù)精確到0.01);

(3)預測到哪一年的工業(yè)增加值能突破30萬億元大關.

附:樣本 的相關系數(shù),

,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在地面上同一地點觀測遠方勻速垂直上升的熱氣球,在上午10點整熱氣球的仰角是,到上午10點20分的仰角變成.請利用下表判斷到上午11點整時,熱氣球的仰角最接近哪個度數(shù)( )

0.5

0.559

0.629

0.643

0.656

0.669

0.682

0.695

0.707

0.866

0.829

0.777

0.766

0.755

0.743

0.731

0.719

0.707

0.577

0.675

0.810

0.839

0.869

0.900

0.933

0.966

1.0

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】20個兩兩不同的正整數(shù),且集合中有201個不同的元素.求集合中不同元素個數(shù)的最小可能值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直角梯形與等腰直角三角形所在的平面互相垂直. ,,.

(1)求證:;

(2)求證:平面平面;

(3)線段上是否存在點,使平面?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是的導函數(shù)的圖象,對于下列四個判斷,其中正確的判斷是( .

A.上是增函數(shù);

B.時,取得極小值;

C.上是增函數(shù)、在上是減函數(shù);

D.時,取得極大值.

查看答案和解析>>

同步練習冊答案