四棱錐中,平面,,底面為直角梯形分別是的中點(diǎn)

(Ⅰ)求證:// 平面

(Ⅱ)求截面與底面所成二面角的大小;

(Ⅲ)求點(diǎn)到平面的距離.

解 :(1)//     ………1分

  ………2分

平面平面, ∴//平面  …………4分

(2)以為原點(diǎn),以分別為建立空間直角坐標(biāo)系,

設(shè)平面的的法向量為,又

則有:

,則,              …………6分

為平面的法向量,                 

,

又截面與底面所成二面角為銳二面角,

∴截面與底面所成二面角的大小為       …………8分

(3)∵,

∴所求的距離 ………12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆河北衡水中學(xué)高二上第四次調(diào)研考試?yán)頂?shù)學(xué)卷(解析版) 題型:解答題

如圖,在四棱錐中,平面ABCD,底面ABCD是菱形,.

(1)求證:平面PAC;

(2)若,求所成角的余弦值;

(3)當(dāng)平面PBC與平面PDC垂直時,求PA的長.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆河南省高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

(本題13分)

如圖,在四棱錐中,平面,底面是菱形,.分別是的中點(diǎn).

(1) 求證:;

(2) 求證:.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆四川省高二10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

在四棱錐中,平面ABCD,底面ABCD是菱形,.

(1)求證:平面PAC;

(2)若,求PBAC所成角的余弦值;

(3)若PA=,求證:平面PBC⊥平面PDC

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年廣東省陸豐市高三第四次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,在四棱錐中,平面,底面是菱形,點(diǎn)O是對角線的交點(diǎn),的中點(diǎn),.

(1) 求證:平面;

(2) 平面平面;

(3) 當(dāng)四棱錐的體積等于時,求的長.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高三下學(xué)期模擬預(yù)測理科數(shù)學(xué)試卷(解析版) 題型:解答題

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當(dāng)時,求證:;

(Ⅱ)若邊上有且只有一個點(diǎn),使得,求此時二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時,底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分

,得證。

第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時,存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點(diǎn)Q,使得

由此知道a=2,  設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當(dāng)時,底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………3分

(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時,存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時,BC邊上有且只有一個點(diǎn)Q,使得由此知道a=2,

設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>

同步練習(xí)冊答案