已知點B分向量
AC
的定比為-
3
5
,且
AC
=k
BA
,則實數(shù)k=
 
考點:平行向量與共線向量
專題:平面向量及應(yīng)用
分析:畫出圖形,結(jié)合圖形,根據(jù)定比分點的定義,得出向量
AB
BC
的關(guān)系,求出k的值.
解答: 解:如圖所示,
∵點B分向量
AC
的定比為-
3
5
,
AB
=-
3
5
BC
;
AB
=-
3
5
BA
+
AC

=-
3
5
BA
-
3
5
AC
;
3
5
AC
=
2
5
BA
,
AC
=
2
3
BA
,
即k=
2
3

故答案為:
2
3
點評:本題考查了平面向量的應(yīng)用問題,解題時應(yīng)畫出圖形,結(jié)合圖形解答問題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線方程為y2=4x,若點P到焦點的距離為3,則點P的坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a∈{-2,0,1,
3
4
},則方程x2+y2+ax+2ay+2a2+a-1=0表示的圓的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

F是橢圓E:
x2
a2
+
y2
b2
=1的右焦點,P是該橢圓上任一點,以PF為直徑作圓C1,以橢圓長軸為直徑作圓C2,則圓C1與圓C2的位置關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x3-3x2+2x+a,若f(x)在R上的極值點分別為m,n,則m+n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點P(-1,
3
),O為坐標(biāo)原點,點Q是圓O:x2+y2=1上 一點,且
OQ
PQ
=0,則|
OP
+
OQ
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l過點(-1,5)且與直線x-2y+3=0垂直,則l的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1(-1,0),F(xiàn)2(1,0),P為橢圓上一點,Q為上頂點,
F1M
=2
MP
,
PO
F2M
=0.
(1)當(dāng)橢圓離心率e=
1
2
時,若直線過點(0,-
3
7
)且與橢圓交于A,B(不同于Q)兩點,求∠AQB;
(2)求橢圓離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷函數(shù)f(x)=x+
1
x
在(0,1)上的單調(diào)性,并用定義給出證明.

查看答案和解析>>

同步練習(xí)冊答案