若數(shù)列{an}的前n項(xiàng)和Sn=2n2-9n+2,則an=
 
考點(diǎn):數(shù)列的求和
專(zhuān)題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:利用“當(dāng)n=1時(shí),a1=S1;當(dāng)n≥2時(shí),an=Sn-Sn-1”即可得出.
解答: 解:當(dāng)n=1時(shí),a1=S1=2-9+2=-5.
當(dāng)n≥2時(shí),an=Sn-Sn-1=2n2-9n+2-[2(n-1)2-9(n-1)+2]=4n-11.
∴an=
-5,n=1
4n-11.n≥2

故答案為:
-5,n=1
4n-11.n≥2
點(diǎn)評(píng):熟練掌握方法“當(dāng)n=1時(shí),a1=S1;當(dāng)n≥2時(shí),an=Sn-Sn-1”是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知tanα+
9
tanα
=6,則
sinα+2cosα
2sinα-cosα
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+(b-2)x+c(2a-3≤x≤1)是偶函數(shù),則a+b=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果球的半徑為3,那么它的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)是定義域?yàn)镽的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2-4x,那么當(dāng)x<0時(shí),f(x)=
 
,不等式f(x+2)<5的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用總長(zhǎng)為18m的鋼條制作一個(gè)長(zhǎng)方體容器的框架,若所制作容器的底面的相鄰兩邊長(zhǎng)之比為2:1,那么容器容積最大時(shí),高為
 
m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用0,1,2,3,4排成無(wú)重復(fù)數(shù)字的五位數(shù),要求偶數(shù)字相鄰,奇數(shù)字也相鄰,則這樣的五位數(shù)的個(gè)數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)=
f1(x),   x≤x0
f2(x),  x>x0
,則下列命題中一定正確的是(  )
A、若f(x)有最大值f(x0),則f1(x)在(-∞,x0]上為增,f2(x)在(x0,+∞)上為減
B、若f1(x)在(-∞,x0]上為增,f2(x)在(x0,+∞)上為減,則f(x)有最大值f(x0
C、若f1(x)在(-∞,x0]上為減,f2(x)在(x0,+∞)上為減,則f(x)在R上是減函數(shù)
D、若f(x)在R上是減函數(shù),則f1(x)在(-∞,x0]上為減,f2(x)在(x0,+∞)上為減

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
log2|x-1|   (x≠1)
2        (x=1)
,若關(guān)于x的方程f2(x)+bf(x)+c=0(b,c∈R)恰有5個(gè)不同的實(shí)數(shù)解xi(i=1,2,3,4,5),則f(
5
i=1
xi)的值為(  )
A、8B、5C、4D、2

查看答案和解析>>

同步練習(xí)冊(cè)答案