13.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0),其左,右焦點分別為F1,F(xiàn)2,若以右焦點F2(c,0)(c>0)為圓心作半徑為c的圓與雙曲線的右支的一個交點為M,且直線F1M恰好與圓相切,則雙曲線的離心率為$\sqrt{3}+1$..

分析 由題意可得M在雙曲線的右支上,MF1⊥MF2,且|MF2|=c,|MF1|=2a+c,F(xiàn)1F2=2c,運用勾股定理和離心率公式,計算即可得到.

解答 解:由題意可得M在雙曲線的右支上,MF1⊥MF2,
且|MF2|=c,|MF1|=2a+c,F(xiàn)1F2=2c,
由勾股定理可得,c2+(2a+c)2=4c2,
化簡可得e2-2e2-2=0,
∵e>1
∴e=$\sqrt{3}+1$.
故答案為:$\sqrt{3}+1$.

點評 本題考查雙曲線的定義、方程和性質(zhì),考查直徑所對的圓周角為直角,考查離心率的求法,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.實數(shù)x,y滿足$\left\{\begin{array}{l}{x+4y≥0}\\{x-4y+4≥0}\\{x-2y≤0}\end{array}\right.$,則3x-2y的取值范圍是(-7,10).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知$\overrightarrow a$,$\overrightarrow b$均為單位向量,它們的夾角為60°,$\overrightarrow c$=$\overrightarrow a$-2$\overrightarrow b$,則下列結(jié)論正確的是(  )
A.$\overrightarrow a$∥$\overrightarrow c$B.$\overrightarrow b$∥$\overrightarrow c$C.$\overrightarrow a$⊥$\overrightarrow c$D.$\overrightarrow b$⊥$\overrightarrow c$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知x=1是函數(shù)f(x)=xa+b的一個零點.
(1)若函數(shù)f(x)在點(1,f(1))處的切線的斜率為2,求f(x)的解析式;
(2)設(shè)g(x)=f(x)+ln(1+e-2x),且g(x)是偶函數(shù),求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.如果函數(shù)y=$\frac{1}{2}$sinωx在區(qū)間[-$\frac{π}{8}$,$\frac{π}{12}$]上單調(diào)遞減,那么ω的取值范圍為( 。
A.[-6,0)B.[-4,0)C.(0,4]D.(0,6]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.下列選項中,與其他三個選項所蘊含的數(shù)學推理不同的是( 。
A.獨腳難行,孤掌難鳴B.前人栽樹,后人乘涼
C.物以類聚,人以群分D.飄風不終朝,驟雨不終日

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知命題p:a≥2;命題q:對任意實數(shù)x∈[-1,1],關(guān)于x的不等式x2-a≤0恒成立,若p且q是真命題,則實數(shù)a的取值范圍是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.設(shè)函數(shù)f(x)=-2x2+ax-lnx(a∈R),g(x)=$\frac{ex}{{e}^{x}}$+3.
(I)若函數(shù)f(x)在定義域內(nèi)單調(diào)遞減,求實數(shù)a的取值范圍;
(II)若對任意x∈(0,e),都有唯一的xo∈[e-4,e],使得g(x)=f(xo)+2xo2成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某公司4個店某月銷售額和利潤如表:
商店名稱ABCD
銷售額(x)/千萬元2356
利潤額(y)/百萬元2334
(1)畫出銷售額關(guān)于利潤額的散點圖.
(20若銷售額和利潤額具有相關(guān)關(guān)系,用最小二乘法計算利潤額y對銷售額x的回歸直線方程.$b=\frac{{{x_1}{y_1}+{x_2}{y_2}+…+{x_n}{y_n}-n\overline x\overline y}}{{{x_1}^2+x{{{\;}_2}^2}+…+{x_n}^2-n{{\overline x}^2}}}$,$a=\overline y-b\overline x$(精確到0.1)

查看答案和解析>>

同步練習冊答案