A. | [-6,0) | B. | [-4,0) | C. | (0,4] | D. | (0,6] |
分析 由題意利用正弦函數(shù)的單調(diào)性,可得ω<0且函數(shù)y=$\frac{1}{2}$sin(-ωx)在區(qū)間[-$\frac{π}{12}$,$\frac{π}{8}$]上單調(diào)遞增,由此求得ω的范圍.
解答 解:∵函數(shù)y=$\frac{1}{2}$sinωx在區(qū)間[-$\frac{π}{8}$,$\frac{π}{12}$]上單調(diào)遞減,
∴ω<0且函數(shù)y=$\frac{1}{2}$sin(-ωx)在區(qū)間[-$\frac{π}{12}$,$\frac{π}{8}$]上單調(diào)遞增,
則 $\left\{\begin{array}{l}{ω<0}\\{-ω•(-\frac{π}{12})≥2kπ-\frac{π}{2},k∈Z}\\{-ω•\frac{π}{8}≤2kπ+\frac{π}{2},k∈Z}\end{array}\right.$,即 $\left\{\begin{array}{l}{ω<0}\\{ω≥24k-6}\\{ω≥-16k-4}\end{array}\right.$,求得-4≤ω<0,
故選:B.
點評 本題主要考查正弦函數(shù)的單調(diào)性,正弦函數(shù)的圖象,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{3}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{11}{5}$ | B. | $\frac{11}{5}$i | C. | -$\frac{11}{5}$ | D. | -$\frac{11}{5}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3f(2)<2f(3) | B. | 3f(2)>2f(3) | C. | 2f(2)<3f(3) | D. | 2f(2)>3f(3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | 1 | D. | $\frac{3}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com