如圖,甲船以每小時30
2
海里的速度向正北方向航行,乙船按固定方向勻速直線航行,當甲船位于A1處時,乙船位于甲船的南偏西75°方向的B1處,此時兩船相距20海里,當甲船航行20分鐘到達A2處時,乙船航行到甲船的南偏西60°方向的B2處,此時兩船相距10
2
海里,則乙船每小時航行
 
海里.
考點:解三角形的實際應(yīng)用
專題:應(yīng)用題,解三角形
分析:先求出B1B2的距離,再由時間求出乙船航行的速度.
解答: 解:在△A1A2B2中,A1A2=A2B2=10
2
,∠A1A2B2=60°,∴A1B2=10
2

在△B1A1B2中,A1B1=20,A1B2=10
2
,∠B1A1B2=45°,
則由余弦定理得:B1B2=
400+200-2×20×10
2
×
2
2
=10
2
,v=30
2

∴乙船每小時航行30
2
海里.
故答案為:
點評:本題考查解三角形的實際應(yīng)用,考查余弦定理,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
3x+5,x≤0
x+5,0<x≤1
-2x+8,x>1

(1)求f(
3
2
),f(
1
π
),f(-1)的值.
(2)求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

F為拋物線y2=2x的焦點,A,B,C為該拋物線上三點,若
FA
+
FB
+
FC
=
0
,則|
FA
|+|
FB
|+|
FC
|=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,BC是單位圓A的一條直徑,F(xiàn)是線段AB上的點,且
BF
=
FA
,若DE是圓A中繞圓心A運動的一條直徑,則
FD
FE
的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

當x∈[-2,0]時,函數(shù)y=3x的值域是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)下列條件,求圓的標準方程:
(1)圓心為D(8,-3),且過點E(5,1);
(2)過A(5,1),B(7,-3),C(2,-8).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=sinxcosx是( 。
A、最小正周期為2π且在[0,π]內(nèi)有且只有三個零點的函數(shù)
B、最小正周期為2π且在[0,π]內(nèi)有且只有二個零點的函數(shù)
C、最小正周期為π且在[0,π]內(nèi)有且只有三個零點的函數(shù)
D、最小正周期為π且在[0,π]內(nèi)有且只有二個零點的函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2-3x+2≥0},集合B={x|x-1>0},求A∩B、A∪B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算下列各式:
(Ⅰ)lg5•lg20+(lg2)2
(Ⅱ)0.027- 
1
3
-(-
1
6
-2+2560.75-
1
3
+(
1
9
0

查看答案和解析>>

同步練習冊答案