在平面直角坐標(biāo)系xoy中,若雙曲線方程為
x2
m
-
y2
m2+3
=1的焦距為6,則實(shí)數(shù)m=
 
考點(diǎn):雙曲線的簡單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:首先,根據(jù)雙曲線的方程,得到該焦點(diǎn)在x軸上,然后,利用焦距,建立等式求解實(shí)數(shù)m的值即可.
解答: 解:∵雙曲線方程為
x2
m
-
y2
m2+3
=1,
∴c2=m+m2+3,①
∵2c=6,
∴c=3,代入①得,
m=2或m=-3(舍去),
故答案為:2.
點(diǎn)評(píng):本題重點(diǎn)考查了雙曲線的簡單幾何性質(zhì),屬于中檔題.準(zhǔn)確判斷其焦點(diǎn)位置是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓錐的軸截面的母線與軸的夾角為
π
3
,母線長為3,則過頂點(diǎn)的截面面積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知:a,b,x均是正數(shù),且a>b,求證:1<
a+x
b+x
a
b
;
(2)當(dāng)a,b,x均是正數(shù),且a>b,求證
b
a
b+x
a+x
<1;
(3)證明:△ABC中,
sinA
sinB+sinC
+
sinB
sinC+sinA
+
sinC
sinA+sinB
<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x2+
2
x
(x≠0),當(dāng)a>1時(shí),方程f(x)=f(a)的實(shí)根個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線2x2-y2-2=0的右焦點(diǎn)作直線l交曲線于A、B兩點(diǎn),若|AB|=4則這樣的直線存在( 。
A、0條B、1條C、2條D、3條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正四棱錐P-ABCD中,高為1,底面邊長為2,E為BC中點(diǎn),則異面直線PE與DB所成的角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線x2-
y2
b2
=1的左頂點(diǎn)A作斜率為1的直線l,若l與該雙曲線的其中一條漸近線相交于點(diǎn)(
1
2
,y0),則該雙曲線的離心率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線y=x+m與圓x2+y2=16交于不同的兩點(diǎn)M,N,且|
MN
|≥
3
|
OM
+
ON
|,其中O是坐標(biāo)原點(diǎn),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

動(dòng)圓C的方程為x2+y2-2ax-4ay+
9
2
a2=0,是否存在定直線l它與動(dòng)圓C總相切?并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案