在正四棱錐P-ABCD中,高為1,底面邊長為2,E為BC中點(diǎn),則異面直線PE與DB所成的角為
 
考點(diǎn):異面直線及其所成的角
專題:空間角
分析:連結(jié)BD,作PO⊥平面ABCD,交BD于O,取AB中點(diǎn)F,取BC中點(diǎn)E,以O(shè)為原點(diǎn),OF為x軸,OE為y軸,OP為z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線PE與DB所成的角.
解答: 解:如圖,連結(jié)BD,作PO⊥平面ABCD,交BD于O,
取AB中點(diǎn)F,取BC中點(diǎn)E,
以O(shè)為原點(diǎn),OF為x軸,OE為y軸,OP為z軸,
建立空間直角坐標(biāo)系,
由已知得P(0,0,1)E(0,1,0),
B(1,1,0),D(-1,-1,0),
PE
=(0,1,-1),
BD
=(-2,-2,0),
|cos<
PE
,
BD
>|=|
-2
2
8
|=
1
2
,
∴異面直線PE與DB所成的角為60°.
故答案為:60°.
點(diǎn)評:本題考查異面直線所成角的大小的求法,解題時要認(rèn)真審題,注意向量法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c為不全相等的正數(shù),求證:
a+c-b
b
+
a+b-c
c
+
b+c-a
a
>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:若(x-1)(x-2)≠0,則x≠1或x≠2;命題q:存在實(shí)數(shù)x0,使2x0<0.下列選項(xiàng)中為真命題的是( 。
A、pB、¬qC、p∨qD、q∧p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過原點(diǎn)的直線l與曲線C:
x2
3
+y2
=1相交,若直線l被曲線C所截得的線段長不大于
6
,則直線l的傾斜角α的取值范圍是( 。
A、
π
6
≤α≤
6
B、
π
6
<α<
3
C、
π
3
≤α≤
3
D、
π
4
≤α≤
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,若雙曲線方程為
x2
m
-
y2
m2+3
=1的焦距為6,則實(shí)數(shù)m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有兩個投資項(xiàng)目A、B,根據(jù)市場調(diào)查與預(yù)測,A項(xiàng)目的利潤與投資成正比,其關(guān)系如圖甲,B項(xiàng)目的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖乙.(注:利潤與投資單位:萬元)

(1)分別將A、B兩個投資項(xiàng)目的利潤表示為投資x(萬元)的函數(shù)關(guān)系式f(x)和g(x),求y=f(x),y=g(x)在同一坐標(biāo)系內(nèi)圍成封閉圖形的面積;
(2)現(xiàn)將x(0≤x≤10)萬元投資A項(xiàng)目,10-x萬元投資B項(xiàng)目.h(x)表示投資A項(xiàng)目所得利潤與投資B項(xiàng)目所得利潤之和.求h(x)的最大值,并指出x為何值時,h(x)取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面為矩形,AB=
2
,BC=1,E,F(xiàn)分別是AB,PC的中點(diǎn),DE⊥PA.
(Ⅰ)求證:EF∥平面PAD;
(Ⅱ)求證:平面PAC⊥平面PDE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知0<k<
1
3
,則關(guān)于x的方程
|2-x|
=kx的實(shí)數(shù)解的個數(shù)是( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=22x-2x+1+1.
(1)求f(log218+2log 
1
2
6);
(2)若x∈[-1,2],求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案