3.若正實(shí)數(shù)m,n滿足mn=1,證明:$\frac{1}{{e}^{m-1}}$+$\frac{1}{{e}^{n-1}}$<2(m+n).

分析 設(shè)f(x)=$\frac{x}{{e}^{x}}$,g(x)=xlnx,利用導(dǎo)數(shù)判斷兩函數(shù)的單調(diào)性,得出兩函數(shù)的極值,從而由$\frac{x}{{e}^{x}}$-xlnx<$\frac{2}{e}$,故而$\frac{1}{{e}^{m-1}}$-elnm<$\frac{2}{m}$,$\frac{1}{{e}^{n-1}}$-elnn<$\frac{2}{n}$,兩式相加即可得出結(jié)論.

解答 解:設(shè)f(x)=$\frac{x}{{e}^{x}}$,則f′(x)=$\frac{1-x}{{e}^{x}}$,
∴f(x)在(-∞,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減,
∴f(x)的最大值為f(1)=$\frac{1}{e}$,
設(shè)g(x)=xlnx,則g′(x)=lnx+1,
∴g(x)在(0,$\frac{1}{e}$)上單調(diào)遞減,在($\frac{1}{e}$,1)上單調(diào)遞增,
∴g(x)的最小值為g($\frac{1}{e}$)=-$\frac{1}{e}$,
∴f(x)-g(x)<$\frac{1}{e}$-(-$\frac{1}{e}$)=$\frac{2}{e}$.
即$\frac{x}{{e}^{x}}$-xlnx<$\frac{2}{e}$,
∴$\frac{m}{{e}^{m}}$-mlnm<$\frac{2}{e}$,即$\frac{1}{{e}^{m}}$-lnm<$\frac{2}{em}$,
∴$\frac{1}{{e}^{m-1}}$-elnm<$\frac{2}{m}$,
同理:$\frac{1}{{e}^{n-1}}$-elnn<$\frac{2}{n}$,
兩式相加得:$\frac{1}{{e}^{m-1}}$+$\frac{1}{{e}^{n-1}}$-e(lnm+lnn)<2($\frac{1}{m}+\frac{1}{n}$)=2($\frac{m+n}{mn}$),
∵mn=1,
∴$\frac{1}{{e}^{m-1}}$+$\frac{1}{{e}^{n-1}}$<2(m+n).

點(diǎn)評(píng) 本題考查了函數(shù)單調(diào)性與不等式的證明,利用不等式構(gòu)造函數(shù)是解題關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{2x-3y+6≥0}\\{2x-5y+10≤0}\\{x-6≤0}\end{array}\right.$則目標(biāo)函數(shù)z=x+y的最大值為( 。
A.12B.$\frac{52}{5}$C.$\frac{46}{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.使用輾轉(zhuǎn)相除法,得到315和168的最大公約數(shù)是21.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知i是虛數(shù)單位,則復(fù)數(shù)$i+\frac{1}{1-i}$=(  )
A.1+3iB.$\frac{1}{2}+\frac{3}{2}i$C.1-3iD.$\frac{1}{2}-\frac{3}{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.函數(shù)f(x)=x2-alnx(a∈R)(a∈R)不存在極值點(diǎn),則a的取值范圍是( 。
A.(-∞,0)B.(0,+∞)C.[0,+∞)D.(-∞,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知A(-2,4),B(3,-1),C (-3,-4)且$\overrightarrow{CM}$=3$\overrightarrow{CA}$,$\overrightarrow{CN}$=2$\overrightarrow{CB}$,求點(diǎn)M、N及$\overrightarrow{MN}$的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知:函數(shù)f(x)=loga$\frac{1-x}{1+x}$(a>0且a≠1),
(1)求f(x)的定義域;
(2)解關(guān)于x的不等式f(x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知O是△ABC所在平面內(nèi)一點(diǎn),D為BC邊中點(diǎn),且2$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,那么△ABC面積是△OBD面積的( 。┍叮
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)f′(x)是函數(shù)f(x)(x∈R)的導(dǎo)數(shù),且滿足xf′(x)-2f(x)>0,若△ABC是銳角三角形,則( 。
A.f(sinA)•sin2B>f(sinB)•sin2AB.f(sinA)•sin2B<f(sinB)•sin2A
C.f(cosA)•sin2B>f(sinB)•cos2AD.f(cosA)•sin2B<f(sinB)•cos2A

查看答案和解析>>

同步練習(xí)冊(cè)答案