【題目】四色猜想是世界三大數(shù)學(xué)猜想之一,1976年美國(guó)數(shù)學(xué)家阿佩爾與哈肯證明了四色定理.其內(nèi)容是:任意一張平面地圖只用四種顏色就能使具有共同邊界的國(guó)家涂上不同的顏色.用數(shù)學(xué)語(yǔ)言表示為將平面任意地細(xì)分為不相重疊的區(qū)域,每一個(gè)區(qū)域總可以用12,34四個(gè)數(shù)字之一標(biāo)記,而不會(huì)使相鄰的兩個(gè)區(qū)域得到相同的數(shù)字.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線圍成的各區(qū)域(如區(qū)域D由兩個(gè)邊長(zhǎng)為1的小正方形構(gòu)成)上分別標(biāo)有數(shù)字1,23,4的四色地圖符合四色定理,區(qū)域A、BC、D、E、F標(biāo)記的數(shù)字丟失若在該四色地圖上隨機(jī)取一點(diǎn),則恰好取在標(biāo)記為4的區(qū)域的概率是

A. B. C. D.

【答案】B

【解析】

根據(jù)相鄰的兩個(gè)區(qū)域必須是不同的數(shù)字這一規(guī)則,逐個(gè)區(qū)域進(jìn)行判斷,區(qū)域C相鄰給定的標(biāo)記為1,2,3的區(qū)域,從而可以最先判斷,最后可根據(jù)幾何概型的概率求法來(lái)求得概率.

因?yàn)閰^(qū)域C相鄰標(biāo)記1,23的區(qū)域,所以區(qū)域C標(biāo)記4,進(jìn)而區(qū)域D相鄰標(biāo)記2,3,4的區(qū)域,從而推出區(qū)域D標(biāo)記1,區(qū)域A相鄰標(biāo)記1,2,4的區(qū)域,所以區(qū)域A標(biāo)記3,區(qū)域E相鄰標(biāo)記2,3,4的區(qū)域,從而區(qū)域E標(biāo)記1,區(qū)域F相鄰標(biāo)記1,3,4的區(qū)域,從而標(biāo)記2,區(qū)域B相鄰標(biāo)記為1,2,3的區(qū)域,所以標(biāo)記4,所以只有B,C標(biāo)記為4,共占8個(gè)邊長(zhǎng)為1的正方形,面積為8,總共的區(qū)域面積為30,所以在該四色地圖上隨機(jī)取一點(diǎn),則恰好取在標(biāo)記為4的區(qū)域的概率是,故選B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)點(diǎn)的直線被曲線截得的弦長(zhǎng)為2,則直線的方程為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,四邊形,均為正方形,點(diǎn)M的中點(diǎn),點(diǎn)H在線段上,且與平面所成角的正弦值為.

1)求證:平面;

2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)證明:當(dāng)時(shí),函數(shù)有最大值.設(shè)的最大值為,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其導(dǎo)函數(shù)的兩個(gè)零點(diǎn)為.

(I)求曲線在點(diǎn)處的切線方程;

(II)求函數(shù)的單調(diào)區(qū)間;

(III)求函數(shù)在區(qū)間上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某學(xué)校研究性課題《什么樣的活動(dòng)最能促進(jìn)同學(xué)們進(jìn)行垃圾分類(lèi)》向題的統(tǒng)計(jì)圖(每個(gè)受訪者都只能在問(wèn)卷的5個(gè)活動(dòng)中選擇一個(gè)),以下結(jié)論錯(cuò)誤的是(  )

A. 回答該問(wèn)卷的總?cè)藬?shù)不可能是100個(gè)

B. 回答該問(wèn)卷的受訪者中,選擇“設(shè)置分類(lèi)明確的垃圾桶”的人數(shù)最多

C. 回答該問(wèn)卷的受訪者中,選擇“學(xué)校團(tuán)委會(huì)宣傳”的人數(shù)最少

D. 回答該問(wèn)卷的受訪者中,選擇“公益廣告”的人數(shù)比選擇“學(xué)校要求”的少8個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中是自然對(duì)數(shù)的底數(shù).

,求函數(shù)的極值;

若關(guān)于的不等式上恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在棱長(zhǎng)均相等的正四棱錐中, 為底面正方形的重心, 分別為側(cè)棱的中點(diǎn),有下列結(jié)論:

平面;②平面平面;③

④直線與直線所成角的大小為.

其中正確結(jié)論的序號(hào)是__________.(寫(xiě)出所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過(guò)樣本點(diǎn)的中心(,

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

同步練習(xí)冊(cè)答案