由函數(shù)y=sinx(0≤x≤
3
2
π)的圖象與y軸及y=-1所圍成的一個封閉圖形的面積是
 
考點(diǎn):定積分
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:按照定積分的幾何意義,只要計(jì)算S=
2
0
(sinx+1)dx
即可.
解答: 解:畫圖可知封閉圖形的面積為S=
2
0
(sinx+1)dx
=(-cosx+x)
|
2
0
=
2
+1
;
故答案:
2
+1
點(diǎn)評:本題考查了定積分的幾何意義,利用定積分求曲邊梯形的面積,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)滿足下列條件:在定義域內(nèi)存在x0,使得f(x0+1)=f(x0)+f(1)成立,則稱函數(shù)f(x)具有性質(zhì)M;反之,若x0不存在,則稱函數(shù)f(x)不具有性質(zhì)M.
(1)證明:函數(shù)f(x)=3x具有性質(zhì)M,并求出對應(yīng)的x0的值;
(2)已知函數(shù)h(x)=lg
a
x2+1
具有性質(zhì)M,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)的定義域?yàn)镽,f(-1)=1,對任意x∈R,f'(x)>3,則f(x)>3x+4的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y=(x+4)2+3的頂點(diǎn)坐標(biāo)是(  )
A、(4,3)
B、(-4,3)
C、(4,-3)
D、(-4,-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2cos2x-
3
sin2x(x∈R)的最小正周期和最小值分別為(  )
A、2π,3B、2π,-1
C、π,3D、π,-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三名同學(xué)中只有一人考了滿分,當(dāng)他們被問到誰考了滿分時,
甲說:丙沒有考滿分;
乙說:是我考的;
丙說:甲說真話.
事實(shí)證明:在這三名同學(xué)中,只有一人說的是假話,那么得滿分的同學(xué)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=sin4x+cos4x是( 。
A、最小正周期為
π
2
,值域?yàn)閇
2
2
,1]的函數(shù)
B、最小正周期為
π
4
,值域?yàn)閇
2
2
,1]的函數(shù)
C、最小正周期為
π
2
,值域?yàn)閇
1
2
,1]的函數(shù)
D、最小正周期為
π
4
,值域?yàn)閇
1
2
,1]的函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sin2x的圖象向左平移
π
4
個單位,再向上平移1個單位,所得圖象的函數(shù)解析式是(  )
A、y=1+sin(2x+
π
4
B、y=cos2x-1
C、y=-cos2x+1
D、y=cos2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由直線y=x-4,曲線y=
2x
及x軸所圍成的圖形的面積是
 

查看答案和解析>>

同步練習(xí)冊答案