過點(diǎn)F(1,0)且與直線l:x=-1相切的動(dòng)圓圓心的軌跡方程是________.

y2=4x
分析:根據(jù)題意,結(jié)合拋物線的定義可知?jiǎng)訄A圓心的軌跡是以F為焦點(diǎn),直線l為準(zhǔn)線的拋物線,由此不難求出它的軌跡方程.
解答:設(shè)動(dòng)圓的圓心為M(x,y)
∵圓M過點(diǎn)F(1,0)且與直線l:x=-1相切
∴點(diǎn)M到F的距離等于點(diǎn)M到直線l的距離.
由拋物線的定義,得M的軌跡是以F為焦點(diǎn),直線l為準(zhǔn)線的拋物線
設(shè)方程為y2=2px(p>0),則=1,2p=4
∴M的軌跡方程是y2=4x
故答案為:y2=4x
點(diǎn)評(píng):本題給出動(dòng)圓經(jīng)過定點(diǎn)并且與定直線相切,求動(dòng)圓圓心的軌跡方程,著重考查了拋物線的定義與標(biāo)準(zhǔn)方程的知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定點(diǎn)F(1,0),F(xiàn)′(-1,0),動(dòng)點(diǎn)P滿足|
PF
|,
2
2
|
FF′
|,|PF′|成等差數(shù)列
(1)求動(dòng)點(diǎn)P的軌跡E的方程
(2)過點(diǎn)F(1,0)且與x軸不重合的直線l與E交于M、N兩點(diǎn),以MN為對(duì)角線的正方形的第三個(gè)頂點(diǎn)恰在y軸上,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(diǎn)F(1,0)且與直線l:x=-1相切的動(dòng)圓圓心的軌跡方程是
y2=4x
y2=4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•梅州一模)過點(diǎn)F(1,0)且與直線x=-1相切的動(dòng)圓圓心P的軌跡方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點(diǎn)F(1,0),F(xiàn)′(-1,0),動(dòng)點(diǎn)P滿足|
PF
|,
2
2
|
FF′
|,|PF′|成等差數(shù)列
(1)求動(dòng)點(diǎn)P的軌跡E的方程
(2)過點(diǎn)F(1,0)且與x軸不重合的直線l與E交于M、N兩點(diǎn),以MN為對(duì)角線的正方形的第三個(gè)頂點(diǎn)恰在y軸上,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年河南省洛陽市高二(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知定點(diǎn)F(1,0),F(xiàn)′(-1,0),動(dòng)點(diǎn)P滿足||,||,|PF′|成等差數(shù)列
(1)求動(dòng)點(diǎn)P的軌跡E的方程
(2)過點(diǎn)F(1,0)且與x軸不重合的直線l與E交于M、N兩點(diǎn),以MN為對(duì)角線的正方形的第三個(gè)頂點(diǎn)恰在y軸上,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案