【題目】某化工廠從今年一月起,若不改善生產(chǎn)環(huán)境,按生產(chǎn)現(xiàn)狀,每月收入為70萬元,同時將受到環(huán)保部門的處罰,第一個月罰3萬元,以后每月增加2萬元如果從今年一月起投資500萬元添加回收凈化設(shè)備(改造設(shè)備時間不計),一方面可以改善環(huán)境,另一方面也可以大大降低原料成本據(jù)測算,添加回收凈化設(shè)備并投產(chǎn)后的前5個月中的累計生產(chǎn)凈收入是生產(chǎn)時間個月的二次函數(shù)是常數(shù)),且前3個月的累計生產(chǎn)凈收入可達309萬,從第6個月開始,每個月的生產(chǎn)凈收入都與第5個月相同同時,該廠不但不受處罰,而且還將得到環(huán)保部門的一次性獎勵100萬元

(1)求前8個月的累計生產(chǎn)凈收入的值;

(2)問經(jīng)過多少個月,投資開始見效,即投資改造后的純收入多于不改造時的純收入

【答案】(1);(2)經(jīng)過9個月投資開始見效。

【解析】試題分析: (1)根據(jù)g(3)得到k,再計算g(5)和g(5)﹣g(4),而g(8)=g(5)+3[g(5)﹣g(4)],從而得到結(jié)果;

(2)求出投資前后前n個月的總收入,列不等式解出n的范圍即可.

試題解析

(1)據(jù)題意,解得,

第5個月的凈收入為 萬元,

所以, 萬元

2

要想投資開始見效,必須且只需

,

時,

不成立;

時,

驗算得, 時,

所以,經(jīng)過9個月投資開始見效。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱中, 底面, ,且, .點在棱上,平面與棱相交于點

)求證: 平面

)求證: 平面

)求三棱錐的體積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標系中,曲線的方程為,以極點為原點,極軸為軸的正半軸,建立平面直角坐標系,曲線的參數(shù)方程為,( 為參數(shù))

(1)求曲線的參數(shù)方程和曲線的普通方程;

(2)求曲線上的點到曲線的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的首項, ,

(1)求證:數(shù)列為等比數(shù)列;

(2)記,若Sn<100,求最大正整數(shù)n;

(3)是否存在互不相等的正整數(shù)ms,n,使m,sn成等差數(shù)列,且am-1,as-1,an-1成等比數(shù)列?如果存在,請給以證明;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)確定函數(shù)在定義域上的單調(diào)性,并寫出詳細過程;

(2)若上恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列為遞增的等比數(shù)列, ,

數(shù)列滿足

(Ⅰ)求數(shù)列的通項公式;(Ⅱ)求證: 是等差數(shù)列;

(Ⅲ)設(shè)數(shù)列滿足,且數(shù)列的前項和,并求使得對任意都成立的正整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓錐曲線 為參數(shù))和定點 , 是此圓錐曲線的左、右焦點.

(1)以原點為極點,以軸的正半軸為極軸建立極坐標系,求直線的極坐標方程;

(2)經(jīng)過且與直線垂直的直線交此圓錐曲線, 兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】劉徽(約公元 225 —295 年)是魏晉時期偉大的數(shù)學(xué)家,中國古典數(shù)學(xué)理論的奠基人之一,他的杰作《九章算術(shù)注》和《海島算經(jīng)》是中國寶貴的古代數(shù)學(xué)遺產(chǎn). 《九章算術(shù)·商功》中有這樣一段話:斜解立方,得兩壍堵. 斜解壍堵,其一為陽馬,一為鱉臑.” 劉徽注:此術(shù)臑者,背節(jié)也,或曰半陽馬,其形有似鱉肘,故以名云.” 其實這里所謂的鱉臑(biē nào,就是在對長方體進行分割時所產(chǎn)生的四個面都為直角三角形的三棱錐. 如圖,在三棱錐中, 垂直于平面 垂直于,且 ,則三棱錐的外接球的球面面積為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標系中,點M的坐標為,曲線C的方程為;以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,斜率為的直線l經(jīng)過點M

(I)求直線l和曲線C的直角坐標方程:

(II)P為曲線C上任意一點,直線l和曲線C相交于A,B兩點,求△PAB面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案