【題目】已知a是實(shí)數(shù),函數(shù)f(x)= (x-a).

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)設(shè)g(a)為f(x)在區(qū)間[0,2]上的最小值.

①寫出g(a)的表達(dá)式;

②求a的取值范圍,使得-6≤g(a)≤-2.

【答案】見解析

【解析】 (1)函數(shù)的定義域?yàn)閇0,+∞),

f′(x)= (x>0).

若a≤0,則f′(x)>0,f(x)有單調(diào)遞增區(qū)間[0,+∞).

若a>0,令f′(x)=0,得x=

當(dāng)0<x<時(shí),f′(x)<0,

當(dāng)x>時(shí),f′(x)>0.

f(x)有單調(diào)遞減區(qū)間[0,],有單調(diào)遞增區(qū)間(,+∞).

(2)①由(1)知,若a≤0,f(x)在[0,2]上單調(diào)遞增,

所以g(a)=f(0)=0.

若0<a<6,f(x)在[0,]上單調(diào)遞減,在(,2]上單調(diào)遞增,

所以g(a)=f()=-.

若a≥6,f(x)在[0,2]上單調(diào)遞減,所以g(a)=f(2)= (2-a).

綜上所述,g(a)=

②令-6≤g(a)≤-2.若a≤0,無解.

若0<a<6,解得3≤a<6.

若a≥6,解得6≤a≤2+3.

故a的取值范圍為3≤a≤2+3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】每逢節(jié)假日,在微信好友群中發(fā)紅包逐漸成為一種時(shí)尚,還能增進(jìn)彼此的感情,2016年春節(jié)期間,小魯在自己的微信好友群中,向在線的甲、乙、丙、丁四位好友隨機(jī)發(fā)放紅包,發(fā)放的規(guī)則為:每次發(fā)放一個(gè),小魯自己不搶,每個(gè)人搶到的概率相同.

(1)若小魯隨機(jī)發(fā)放了3個(gè)紅包,求甲至少搶到一個(gè)紅包的概率;

(2)若丁因有事暫時(shí)離線一段時(shí)間,而小魯在這段時(shí)間內(nèi)共發(fā)了3個(gè)紅包,其中2個(gè)紅包中各有10元,一個(gè)紅包中有5元.設(shè)這段時(shí)間內(nèi)乙所得紅包的總錢數(shù)為元,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)(mZ)為偶函數(shù),且在區(qū)間(0,+∞)上是單調(diào)增函數(shù).

(1)求函數(shù)f(x)的解析式;

(2)設(shè)函數(shù),若g(x)>2對任意的xR恒成立,求實(shí)數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】本著健康、低碳的生活理念,租用公共自行車的人越來越多.租用公共自行車的收費(fèi)標(biāo)準(zhǔn)是每車每次不超過兩小時(shí)免費(fèi),超過兩小時(shí)的部分每小時(shí)2元(不足1小時(shí)的部分按1小時(shí)計(jì)算).甲乙兩人相互獨(dú)立租車(各租一車一次).設(shè)甲、乙不超過兩小時(shí)還車的概率分別為 ;兩小時(shí)以上且不超過三小時(shí)還車的概率分別為 ;兩人租車時(shí)間都不會(huì)超過四小時(shí).

(1)求出甲、乙所付租車費(fèi)用相同的概率;

(2)設(shè)甲、乙兩人所付的租車費(fèi)用之和為隨機(jī)變量,求隨機(jī)變量的概率分布和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a是實(shí)數(shù),函數(shù)f(x)= (x-a).

(1)求函數(shù)f(x)的單調(diào)區(qū)間;

(2)設(shè)g(a)為f(x)在區(qū)間[0,2]上的最小值.

①寫出g(a)的表達(dá)式;

②求a的取值范圍,使得-6≤g(a)≤-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)P、Q為兩個(gè)非空集合,定義集合P+Q={m+n| m∈P,n∈Q},若P={0,2,5}, Q={1,2,6},則P+Q中元素的個(gè)數(shù)為

A. 9 B. 8 C. 7 D. 6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下是解決數(shù)學(xué)問題的思維過程的流程圖:

在此流程圖中,①、②兩條流程線與“推理與證明”中的思維方法匹配正確的是( )

A. ①—分析法,②—反證法 B. ①—分析法,②—綜合法

C. ①—綜合法,②—反證法 D. ①—綜合法,②—分析法

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓經(jīng)過橢圓)的左右焦點(diǎn),,與橢圓在第一象限的交點(diǎn)為,且,,三點(diǎn)共線.

)求橢圓的方程;

)設(shè)與直線為原點(diǎn))平行的直線交橢圓,兩點(diǎn).當(dāng)的面積取到最大值時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的有(  )

①函數(shù)y的定義域?yàn)?/span>{x|x1};

②函數(shù)yx2x+1(0,+)上是增函數(shù);

③函數(shù)f(x)=x3+1(xR),若f(a)=2,則f(-a)=-2;

④已知f(x)R上的增函數(shù),若ab>0,則有f(a)+f(b)>f(-a)+f(-b).

A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)

查看答案和解析>>

同步練習(xí)冊答案