9.點(diǎn)M(-2,b)在不等式2x-3y+5<0表示的平面區(qū)域內(nèi),則b的取值范圍是(  )
A.b>$\frac{1}{3}$B.b>-9C.b<1D.b≤$\frac{1}{3}$

分析 根據(jù)二元一次不等式表示平面區(qū)域進(jìn)行求解即可.

解答 解:M(-2,b)在不等式2x-3y+5<0表示的平面區(qū)域內(nèi),
則滿足-4-3b+5<0,
解得b>$\frac{1}{3}$.
故選:A

點(diǎn)評 本題主要考查二元一次不等式表示平面區(qū)域,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知7cos2α-sinαcosα-1=0,α∈($\frac{π}{4}$,$\frac{π}{2}$),求cos2α和$sin({2α+\frac{π}{4}})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.對于銳角α,若$tanα=\frac{3}{4}$,則cos2α+2sin2α=( 。
A.$\frac{16}{25}$B.$\frac{48}{25}$C.1D.$\frac{64}{25}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,角A,B,C所對邊分別為a,b,c,若a,b,c成等比數(shù)列,且A=60°,則$\frac{bsinB}{c}$( 。
A.$\frac{\sqrt{6}+\sqrt{2}}{4}$B.$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{6}-\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.如圖所示,已知長方體中OA=AB=2,AA1=3,則點(diǎn)C1的坐標(biāo)為(0,2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC中,a,b,c分別為角A,B,C的對邊,b=2,a=1,cosC=$\frac{3}{4}$.
(1)求c的值;
(2)求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=aln(x+1)+$\frac{1}{2}$x2-x,其中a為實(shí)數(shù).
(Ⅰ)討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)若函數(shù)f(x)有兩個極值點(diǎn)x1,x2,且x1<x2,求證:2f(x2)-x1>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.在△ABC中,角A,B,C的對邊分別為a,b,c,已知tanA=$\frac{1}{2}$,B=$\frac{π}{6}$,b=1,則a等于( 。
A.$\frac{2\sqrt{5}}{5}$B.1C.$\sqrt{5}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知sin(α-$\frac{π}{4}$)=$\frac{3}{5}$,則sin2α=$\frac{7}{25}$.

查看答案和解析>>

同步練習(xí)冊答案