分析 (1)由已知及余弦定理即可計算得解c的值.
(2)由已知及同角三角函數(shù)基本關(guān)系式可求sinC的值,利用正弦定理即可得解sinA的值.
解答 (本題滿分為12分)
解:(1)在△ABC中,由b=2,a=1,cosC=$\frac{3}{4}$,
余弦定理得c2=a2+b2-2abcosC=2,
∴$c=\sqrt{2}$,…6分
(2)∵C為三角形的內(nèi)角,
∴$sinC=\sqrt{1-{{cos}^2}C}=\frac{{\sqrt{7}}}{4}$,…8分
在△ABC中,由正弦定理可知 $\frac{a}{sinA}=\frac{c}{sinC}$,…10分
∴$sinA=\frac{asinC}{c}=\frac{{\sqrt{14}}}{8}$.…12分
點(diǎn)評 本題主要考查了余弦定理,同角三角函數(shù)基本關(guān)系式,正弦定理在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\overrightarrow{a}$∥$\overrightarrow$ | B. | $\overrightarrow{a}$⊥$\overrightarrow$ | C. | $\overrightarrow{a}$⊥($\overrightarrow{a}$$-\overrightarrow$) | D. | $\overrightarrow$⊥($\overrightarrow{a}$$+\overrightarrow$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b>$\frac{1}{3}$ | B. | b>-9 | C. | b<1 | D. | b≤$\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | b>c>a | B. | b>a>c | C. | a>c>b | D. | a>b>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com