7.已知函數(shù)f(x)=$\sqrt{(1+x)(2-x)}$的定義域是集合A,函數(shù)g(x)=ln(x-a)的定義域是集合B.
(1)求集合A、B;
(2)若C={x|2${\;}^{{x}^{2}-2x-3}$<1},求A∩C.

分析 根據(jù)函數(shù)的定義域的求法,求出集合A,B,C,再根據(jù)交集的定義即可求出.

解答 解:(1)因為(1+x)(2-x)≥0
所以-1≤x≤2,集合A={x|-1≤x≤2}; …(3分)
因為x-a>0,所以x>a,集合B={x|x>a}…(6分)
(2)因為${2^{{x^2}-2x-3}}<1$,
所以x2-2x-3<0解得:{x|-1<x<3},…(9分)
則A∩C={x|-1<x≤2}.…(12分)

點評 本題考查了集合的運算,關鍵是掌握函數(shù)的定義域的求法,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.在集合{x|x=$\frac{nπ}{6}$,n=1,2,3…,10}中任取一個元素,所取元素恰好滿足方程sinx=$\frac{\sqrt{3}}{2}$的概率是( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知在某個回歸分析中有甲、乙、丙三個模型,其R2的值依次為0.64、0.80和0.98,則下列說法正確的是(  )
A.甲模型擬合效果最好B.乙模型擬合效果最好
C.丙模型擬合效果最好D.擬合效果與R2的值無關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點為F2(2,0),點P(1,-$\frac{\sqrt{15}}{3}$)在橢圓C上.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)是否存在斜率為-1直線l與橢圓C相交于M,N兩點,使得|F1M|=|F1N|(F1為橢圓的左焦點)?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.設P為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)右支上一點,O是坐標原點,以OP為直徑的圓與直線y=$\frac{a}$x的一個交點始終在第一象限,則雙曲線的離心率e的取值范圍是(1,$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若函數(shù)y=3x+a的圖象經(jīng)過第一、二、三象限,則a的取值范圍是-1<a<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.甲盒子里裝有分別標有數(shù)字1,2,4,7的4張卡片,乙盒子里裝有分別標有數(shù)字1,4的2張卡片,若從兩個盒子中各隨機地摸取出1張卡片,則2張卡片上的數(shù)字之積為奇數(shù)的概率為(  )
A.$\frac{7}{8}$B.$\frac{3}{4}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知點(1,$\frac{\sqrt{2}}{2}$)在橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上,橢圓離心率為$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過橢圓C右焦點F的直線l與橢圓交于兩點A、B,在x軸上是否存在點M,使得$\overrightarrow{MA}$•$\overrightarrow{MB}$為定值?若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設集合A={x|(4-x)(x+3)≤0},集合B=(x|x-1<0},則(∁RA)∩B等于( 。
A.(-∞,-3]B.[-4,1)C.(-3,1)D.(-∞,-3)

查看答案和解析>>

同步練習冊答案