12.若函數(shù)y=3x+a的圖象經(jīng)過第一、二、三象限,則a的取值范圍是-1<a<0.

分析 由指數(shù)函數(shù)y=3x的圖象過點(0,1),且在第一第二象限,可得把函數(shù)y=3x的圖象向下平移,但平移單位小于1時,能使函數(shù)y=3x+a的圖象經(jīng)過第一、二、三象限,由此求得a的范圍.

解答 解:如圖,
函數(shù)y=3x+a的圖象是把函數(shù)函數(shù)y=3x的圖象向上(a>0)或向下(a<0)平移|a|個單位得到的,
若函數(shù)y=3x+a的圖象經(jīng)過第一、二、三象限,
則需把函數(shù)y=3x的圖象向下平移,但平移單位小于1,
∴-1<a<0.
故答案為:-1<a<0.

點評 本題考查指數(shù)函數(shù)的圖象變換,考查了函數(shù)圖象的平移,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知命題p;$\frac{1}{2}$≤x≤1,命題q:(x-a)(x-a-1)≤0,若¬p是¬q的必要不充分條件,則實數(shù)a的取值范圍是( 。
A.[0,$\frac{1}{2}$]B.[$\frac{1}{2}$,1]C.[$\frac{1}{3}$,$\frac{1}{2}$]D.$(\frac{1}{3},\frac{1}{2}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若sin(x+$\frac{π}{6}$)=$\frac{1}{4}$,則sin($\frac{5π}{6}$-x)+sin2($\frac{π}{3}$-x)+cos(2x+$\frac{π}{3}$)=$\frac{33}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若直線l過點(3,4),且它的一個法向量是$\overrightarrow{a}$=(1,2),則直線l的方程為x+2y-11=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\sqrt{(1+x)(2-x)}$的定義域是集合A,函數(shù)g(x)=ln(x-a)的定義域是集合B.
(1)求集合A、B;
(2)若C={x|2${\;}^{{x}^{2}-2x-3}$<1},求A∩C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.直線y=2x+m與橢圓$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1有兩個公共點,則實數(shù)m的取值范圍是(-2$\sqrt{10}$,2$\sqrt{10}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)關(guān)于x的一元二次方程為x2+2ax+b2=0.
(1)若a是從-2,1,2,3四個數(shù)中任取的一個數(shù),b是從0,1,2三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.
(2)若a是從區(qū)間[-3,0]中任取的一個數(shù),b是從區(qū)間[-2,0]中任取的一個數(shù),求上述方程有實根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在公差不為0的等差數(shù)列{an}中,a2+a4=ap+aq,記$\frac{1}{p}$+$\frac{9}{q}$的最小值為m,若數(shù)列{bn}滿足b1=$\frac{2}{11}$m,則2bn+1-bn•bn+1=1,b1+$\frac{_{2}}{{2}^{2}}$+$\frac{_{3}}{{3}^{2}}$+…+$\frac{_{100}}{{100}^{2}}$=$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.證明函數(shù)f(x)=$\frac{{2}^{x}}{{2}^{x}+\sqrt{2}}$(x∈R)關(guān)于($\frac{1}{2}$,$\frac{1}{2}$)對稱.

查看答案和解析>>

同步練習(xí)冊答案