4.已知等差數(shù)列{an}中,a2=2,a12=-2,則{an}的前10項和為6.

分析 利用等差數(shù)列通項公式列出方程組,求出首項和公差,由此能求出{an}的前10項和.

解答 解:∵等差數(shù)列{an}中,a2=2,a12=-2,
∴$\left\{\begin{array}{l}{{a}_{1}+d=2}\\{{a}_{1}+11d=-2}\end{array}\right.$,
解得a1=2.4,d=-0.4,
∴{an}的前10項和為:
${S}_{10}=10×2.4+\frac{10×9}{2}×(-0.4)$=6.
故答案為:6.

點評 本題考查等差數(shù)列的前10項和的求法,考查等差數(shù)列等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想,函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.在極坐標(biāo)系中,圓ρ=sinθ的圓心的極坐標(biāo)是( 。
A.$(\;1,\;\;\frac{π}{2})$B.(1,0)C.$(\;\frac{1}{2},\;\;\frac{π}{2}\;)$D.$(\;\frac{1}{2},\;\;0)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.底面是正方形的四棱錐中P-ABCD中,側(cè)面PAD⊥底面ABCD,且△PAD是等腰直角三角形,其中PA=PD,E,F(xiàn)分別為線段PC,DB的中點,問在線段AB上是否存在點G,使得二面角C-PD-G的余弦值為$\frac{{\sqrt{3}}}{3}$,若存在,請求出點G的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.直線y=4x與曲線y=x2圍成的封閉區(qū)域面積為$\frac{32}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若復(fù)數(shù)z=$\frac{3-i}{i}$的共軛復(fù)數(shù)為$\overline{z}$,則$\overline{z}$在復(fù)平面內(nèi)的對應(yīng)點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.函數(shù)f(x)=a(x-$\frac{1}{x}$)-2lnx(a∈R).
(1)當(dāng)a=2時,求曲線f(x)在x=2處的切線方程;
(2)若a>$\frac{2e}{{e}^{2}+1}$,且m、n分別為f(x)的極大值和極小值,S=m-n,求證:S<$\frac{8}{{e}^{2}+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,角A,B,C所對的邊分別為a,b,c,且B=60°,c=4.
(Ⅰ)若b=6,求角C的正弦值及△ABC的面積;
(Ⅱ)若D,E在線段BC上,且BD=DE=EC,$AE=2\sqrt{3}BD$,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)D為△ABC的所在平面內(nèi)一點,$\overrightarrow{BC}=-4\overrightarrow{CD}$,則$\overrightarrow{AD}$=( 。
A.$\frac{1}{4}\overrightarrow{AB}-\frac{3}{4}\overrightarrow{AC}$B.$\frac{1}{4}\overrightarrow{AB}+\frac{3}{4}\overrightarrow{AC}$C.$\frac{3}{4}\overrightarrow{AB}-\frac{1}{4}\overrightarrow{AC}$D.$\frac{3}{4}\overrightarrow{AB}+\frac{1}{4}\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知曲線C的極坐標(biāo)方程為ρ=2,在以極點為直角坐標(biāo)原點O,極軸為x軸的正半軸建立的平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=3\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)).
(1)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;
(2)在平面直角坐標(biāo)系中,設(shè)曲線C經(jīng)過伸縮變換φ:$\left\{\begin{array}{l}{{x}^{′}=\frac{1}{2}x}\\{{y}^{′}=y}\end{array}\right.$得到曲線C′,若M(x,y)為曲線C′上任意一點,求點M到直線l的最小距離.

查看答案和解析>>

同步練習(xí)冊答案